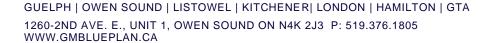
Prepared By:


Annual Operations & Monitoring Report (2022)

St. Mary's Landfill Town of St. Mary's MOECC Certificate of Approval No. A150203

GMBP File: 318007

March 2023

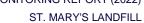


TABLE OF CONTENTS

	DUCTION	
EXISTING SITE CONDITIONS		
GENER	RAL SITE OPERATIONS	2
.1 Cor	nplaints	3
SITE L	IFE EXPECTANCY	3
RECYC	CLING/WASTE REDUCTION	4
SUMM	ARY OF GEOLOGIC SETTING	5
.1 Top	ography	5
.2 Ove	erburden Soils	6
.3 Bed	Irock	6
SUMM	ARY OF HYDROGEOLOGIC SETTING	7
.1 Wa	ter Level Monitoring	7
.2 Ove	erburden Groundwater Flow System	8
.3 Bed	Irock Groundwater Flow System	8
.4 Ver	tical Groundwater Movement	g
MONIT	ORING	9
.1 Sar	npling Requirements	g
8.1.1	Groundwater	9
8.1.2	Surface Water	10
8.1.3	Leachate Monitoring	10
.2 Sar	npling Procedures	11
.3 QA	/QC	11
.4 Bac	kground Groundwater Quality Summary	12
LEACH	IATE CHARACTERIZATION	13
.1 Lea	chate Quality Data	13
.2 Lea	chate Indicator Parameters	15
WA	TER QUALITY RESULTS	15
0.1	Groundwater Quality Results	16
10.1.1	Up-gradient and Cross-gradient Water Quality	16
10.1.2	Downgradient Water Quality	19
10.1.3	Private Well Water Quality	20
10.1.4	Reasonable Use	22
10.1.5	Comparison of Groundwater Chemistry to Reasonable Use	23
0.2	Surface Water Quality Results	
10.2.1	Basin A	24
10.2.2	Basin B	24
10.2.3	Sediment Accumulation	25
	GENER 3.1 Cor SITE LI RECYC SUMM. 3.1 Top 3.2 Ove 3.3 Bed 3.4 Ver MONIT 3.1 Sar 3.1 Sar 3.2 Sar 3.3 QA 3.4 Bad 4 Bad 4 Bad 1.1 Lea 1.2 Lea WA 0.1 10.1.1 10.1.2 10.1.3 10.1.5 10.2.2	GENERAL SITE OPERATIONS .1 Complaints .3 SITE LIFE EXPECTANCY .3 RECYCLINGWASTE REDUCTION5 SUMMARY OF GEOLOGIC SETTING1 Topography .2 Overburden Soils .3 Bedrock .5 SUMMARY OF HYDROGEOLOGIC SETTING1 Water Level Monitoring .2 Overburden Groundwater Flow System .3 Bedrock Groundwater Flow System .4 Vertical Groundwater Movement .5 MONITORING .1 Sampling Requirements .1.1 Groundwater .1.2 Surface Water .1.3 Leachate Monitoring .2 Sampling Procedures .3 QA/QC .4 Background Groundwater Quality Summary .5 LEACHATE CHARACTERIZATION1 Leachate Quality Data .2 Leachate Indicator Parameters5 WATER QUALITY RESULTS .6 O.1 Groundwater Quality Results .7 O.1.1 Up-gradient Water Quality .7 O.1.2 Downgradient Water Quality .7 O.1.3 Private Well Water Quality .7 O.1.4 Reasonable Use .7 O.1.5 Comparison of Groundwater Chemistry to Reasonable Use .7 O.2 Surface Water Quality Results

GMBP FILE: 318007 MARCH 2023

(4)	Blue Plan	ANNUAL OPERATION
	ENGINEERING	

	10.2.4 Onsite Watercourse	25
11.	SUMMARY AND CONCLUSIONS	26
12.	RECOMMENDATIONS	27

TABLES

Table 1	Summary of Monitoring Locations and Well Details
Table 2	Summary of MECP Water Well Records
Table 3	Groundwater Elevations
Table 4	Leaf and Yard Waste Analytical Results
Table 5	Leachate Indicator Parameter Concentrations – Background Wells (2012 to 2022)
Table 6	Summary of Bedrock Groundwater Quality Results
Table 7	Summary of Overburden Groundwater Quality Results
Table 8	Summary of Surface Water Quality Results
Table 9	Vertical Hydraulic Gradients
Table 10	MH B - Historical Groundwater Quality Results
Table 11	Summary of Duplicate RPD Analysis Results
Table 12	Leachate Comparison - Phase I and Phase II/III Leachate Analytical Results
Table 13	Summary of Stream Flows

FIGURES

Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Surficial Geology
Figure 4	Bedrock Geology
Figure 5	Chloride Concentrations
Figure 6	Groundwater Contour Plan – Overburden
Figure 7	Groundwater Contour Plan – Bedrock
Figure 8	Aerial Photograph and Cross-Section Location Plan
Figure 9	Cross Section A-A'
Figure 10	Cross Section B-B'
Figure 11	Cross Section C-C'
Figure 12	Cross Section D-D'

APPENDICES

APPENDIX A: CERTIFICATE OF APPROVAL NO. A150203 & AMENDMENTS
APPENDIX B: MECP WELL RECORDS
APPENDIX C: HISTORICAL GROUNDWATER ELEVATION DATA (HYDROGRAPHS)
APPENDIX D: HISTORICAL GROUNDWATER QUALITY ANALYTICAL RESULTS (TABLES & GRAPHS)
APPENDIX E: HISTORICAL SURFACE WATER QUALITY ANALYTICAL RESULTS (TABLES & GRAPHS)
APPENDIX F: HISTORICAL LEACHATE QUALITY RESULTS
APPENDIX G: LABORATORY CERTIFICATES OF ANALYSIS – CURRENT MONITORING YEAR
APPENDIX H: MONITORING WELL, BOREHOLE, AND TEST PIT LOGS

ANNUAL OPERATIONS & MONITORING REPORT (2022)

ST. MARY'S LANDFILL TOWN OF ST. MARY'S

MARCH 2023

GMBP FILE: 318007

1. INTRODUCTION

The St. Mary's Landfill Site is located at 1221 Water Street South, approximately two kilometres southwest of the town of St. Mary's. The site is located on part of Lots 35 and 36 of Thames Concessions, east of Perth County Road 123, as shown in Figure 1. The waste disposal site is owned and operated by the Town of St. Mary's. Landfill operations are conducted under the Ministry of the Environment Conservation and Parks (MECP) Provisional Certificate of Approval (CofA, now referred to as an Environmental Compliance Approval, or ECA) for a Waste Disposal Site No. A150203, issued June 24, 2010 and amended in December 2013, November 2015, September 2016, September 2017, September 2018, October 2019, November 2020, and January 2022. Copies of the C of A for the site and the amendments are provided in Appendix A.

The Ministry of the Environment, Conservation and Parks (MECP) approved a usable area of 8-hectares for landfilling within the 37-hectare Waste Disposal Site. The remaining area is devoted to buffer area, waste receiving, an easement for an existing sewer, and the stormwater collection and management system. Landfilling at the site was initiated in December of 1984 with the construction of Phase I. Based on a review of available information, prior to landfilling at the property, St. Mary's Cement operated a clay and borrow pit on the property until 1977. The approved capacity of the site, as described in the Amended ECA Issued January 10, 2022, is 349,050 m³ for waste and daily cover material (prior to final cover). However, it is noted that an application to amend the existing ECA to increase the annual landfill capacity (i.e., the interim capacity) was provided to the MECP (dated July 29, 2022). At this time, no response has been provided by the MECP.

The current site layout, design, approval framework and onsite operations are based on a series of accepted and Ministry approved documents including the following:

- Hydrogeological Investigation, Phase II/III, St. Marys Landfill Site, St. Marys, Ontario, dated November 1992 (revised as per MOE comments) (referred to as Phase II/III Hydrogeologic Investigation).
- Design and Operation Report, Phase II/III, St. Marys Landfill Site, St. Marys, Ontario, dated November 1992 (revised as per MOE comments) (referred to as Phase II/III Design and Operation Report).
- Leachate Treatment and Disposal Alternatives, St. Marys Landfill Site, St. Marys, Ontario, dated November 1992 (revised as per MOE comments) (referred to as Leachate Treatment and Disposal Alternatives Report).
- Addendum: Design and Operations Report Update, St. Marys Landfill Site, St. Marys, Ontario, dated April 2009.
- Design and Operations Report: Addendum Leaf and Yard Waste Composting Operation, St. Marys Landfill Site, St. Marys, Ontario, dated October 2009.

MARCH 2023

In addition to the above noted documents, several ECA/CofA amendments have been obtained pertaining to extending the approved airspace capacity of the Site to satisfy the requirements of Conditions 27 and 28 of the ECA. The amendments have been completed and applications submitted on an annual basis to provide for approval on interim operational capacity. Additionally, Condition 25 (a) through (s) of the Amended ECA requires that an Annual Monitoring and Operations Report be submitted by March 31st of each calendar year to summarize the site operations for the previous calendar year. This report is submitted to meet the annual monitoring and operations reporting requirements specified under Condition 25 of the ECA for the St. Mary's Landfill Site.

2. EXISTING SITE CONDITIONS

The St. Mary's Landfill Site has a usable area of 8-hectares for landfilling within the 37-hectare Waste Disposal Site.

Based on a review of available information, Phase I of the landfill was filled within the first 9 years of landfilling and was completed and finished with final cover in the summer of 1993. Phase I includes a leachate collection system that consists of perforated collection pipes and manholes situated around the perimeter of the closed refuse pile.

The landfill area that is currently in operation consists of the approved 8-cell portion of the landfill footprint identified as Phase II/III. The cells are filled from east to west, cells 1 through 7, with landfilling in portions of cells 5, 6, 7, and 8 being completed as part of the current operations. Phase II/III also includes a leachate collection system that consists of collection pipes and manholes situated around the perimeter of Phase II/III as well as lateral collector pipes located beneath the waste.

Both the Phase I and Phase II/III systems were reportedly designed to drain into leachate holding tanks. In 1997, a leachate gravity sewer was installed that allows for the leachate to drain to the Town's sanitary sewer system. The Phase I leachate holding tank was reportedly decommissioned in 2008, and the Phase II/III leachate holding tank was incorporated into the gravity sewer system and now contains a leachate shut-off valve. There is currently no on-site leachate storage (i.e., the leachate flows by gravity directly to the sanitary sewer system).

The perimeter of the property is secured with wood and wire fencing and access to the site is through the single gated entrance located off of Water Street South. The landfill layout can be seen in Figure 2.

3. GENERAL SITE OPERATIONS

Landfilling at the St. Mary's Landfill Site began in December of 1984. Prior to landfilling, St. Mary's Cement reportedly operated a clay and borrow pit on the property until 1977. The St. Mary's Landfill Site services the Town of St. Mary's and is approved for the disposal of solid, non-hazardous wastes.

The Bluewater Recycling Association (BRA) provides curbside waste collection services weekly on Tuesday and Friday, and curbside collection of Blue Box recyclables every second week. Leaf and yard waste is collected through specific curbside collection days, a drop-off bin at the landfill, and/or at a convenience depot located at the Town's Municipal Operations Centre.

The current operating hours at the site are Tuesday, Wednesday, and Friday from 8am to 4:30pm; and Saturday from 8am to 12:00pm. A site attendant is present during operating hours. The current site hours are within the limits outlined under Condition 12 of the ECA.

MARCH 2023

Activities that currently occur at the St. Mary's Landfill waste disposal site include:

- final disposal of solid, non-hazardous waste
- collection and storage for diversion from final disposal of recyclable waste
- composting of leaf and yard waste

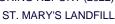
A Site Plan is provided in Figure 2.

3.1 Complaints

No complaints related to site conditions or landfilling operations were received during the current reporting period.

4. SITE LIFE EXPECTANCY

Based on the current year's capacity determination survey completed on October 6, 2022, and volumetric calculations, the estimated average annual filling for the current reporting period was approximately 7,006 m³, which is generally consistent with past measured volumes. Weigh scale records indicate that 6,594 tonnes of waste were disposed of during the current operating year.


To provide an estimate of the waste placement density, it is important to note that the volume of daily covering material is also included in the volumetric survey data. It is estimated that 20 to 30 percent of the filled volume during the operating year would be attributed to daily or intermediate covering soil. For the purposes of this report, it assumed that the daily cover occupies approximately 20% of the volume (or 1:4 ratio of waste to cover). Therefore, the adjusted volume of waste is equal to 5,605 m³. Based on the reported scaled mass of waste provided by the Town, the resultant density of the placed waste is approximately 1,176 kg/m³. This calculated density is consistent with the use of a sheepsfoot packer with several passes of the machine and is considered to represent a good level of waste compaction. It may be noted that a resultant waste density over 1,000 kg/m³ is considered to be exceptional. The increased density of placed waste represents an increasing trend in recent years and may be attributed to increased operational efficiencies and improvements. The density of placed waste will continue to be monitored on an ongoing basis. Assuming a 1:4 ratio of waste to cover, the average annual volume of cover is estimated to be 1,401 m³.

For comparison, 8,889 m³ of capacity was reportedly used in 2021. Assuming a 1:4 ratio of waste to cover, the adjusted waste volume is equal to 7,111 m³. Weigh scale records for 2021 indicated that 6,802 tonnes of waste were placed at an approximate in-situ density of 956 kg/m³.

The PDO (CRA, 1992 and 2009) considered a total combined air space capacity of 380,500 m³.

- 104.000 for Phase I
- 140,000 for Phase II, and
- 136,500 for Phase III.

The initial Phase II/III approved capacity was for 276,500 m³. Since reaching final contours, the Town has been seeking additional capacity through the Environmental Assessment process. In the interim, incremental volume increases have been approved through annual amendments to the ECA. The January 10, 2022 Amended ECA approved a maximum volume of 349,050 m³ of waste and daily cover (prior to final cover) for continued filling in Phase II/III of the Site.

MARCH 2023

GMBP calculates that 6,935 m³ capacity granted under the 2022 Amended ECA remained available as of October 2022. Dividing this by the 2022 annualized rate-of-fill of 7,006 m³ provides a remaining life of approximately 1 year, meaning that filling could continue until about October 2023 at the current packing density. However, the Amended ECA states that waste can be disposed at the Site until September 30, 2022. Consequently, sufficient capacity exists within the current notice to allow waste disposal for the full term of the 2022 Amended ECA.

To satisfy Conditions 27 and 28 of the existing ECA, and to continue landfilling beyond September 30, 2022, an ECA application was submitted to the MECP and received on July 29, 2022. The July 2022 application specified an updated annual volume of 17,000 m³ required up to September 30, 2023, bringing the total interim site capacity to 366,050 m³. The MECP provided an acknowledgment letter indicating that the application and supporting information was sufficient and that their review process was ongoing. Based on consultation with the MECP, it is our understanding that the application was assigned to a reviewer and was in the process of being completed at the time of the AMR issuance. It is noted that the Town continues to operate under the approved capacity provided in the most recent ECA amendment (January, 2022) as they await approval of the July, 2022 application. In addition to the annual interim capacity ECA amendments, Environmental Assessment (EA) efforts are currently ongoing to provide approval of a new site design that would provide for continued landfilling to a new capacity. While the new design and volumetric capacity have not been finalized/approved at this time, it is expected to be in the range of 700,000 m³, or approximately 40 years of waste placement (pending MECP approval).

5. RECYCLING/WASTE REDUCTION

The Town of St. Mary's has several waste diversion operations to reduce the amount of landfill disposal and prolong the life of the Site. BRA conducts curbside collection of Blue Box recyclables for the Town every second week. The Site provides one of many additional convenience locations for residents to drop off Blue Box recyclables for collection by BRA.

Leaf and yard waste is collected for composting at the Site through special curbside collection days, a drop-off bin at the landfill, and a convenience depot located at the Town's Municipal Operations Centre. Leaf and yard waste is composted for use as organic cover material at the Site. Wood waste is collected at the Site to be chipped and used for daily cover. The finished compost must meet production requirements and metal testing if it is to be transferred off-site for unrestricted use. While the compost has consistently met requirements, finished compost has not left the Site and has only been used as cover material within the landfill footprint.

In 2005, the Town banned the disposal of e-waste in the landfill. Currently, Greentec in Stratford, Ontario receives e-waste collected in a shipping container at the landfill. The Town also has a partnership with Orange Drop, a recycling program for household hazardous waste and special waste materials. Historically, the Town ran a Municipal Hazardous and Special Waste (MHSW) collection program that includes three separate event collection days where MHSW is collected and hauled offsite for disposal in partnership with Photech Environmental. However, since the current monitoring period this program has been discontinued and the Site is no longer accepting MHSW materials.

Based on municipal records provided by the Town, the following quantities of recyclables were diverted from the landfill during the current reporting period:

Diverted Material	2022 Quantity (tonnes)	Receiver
Blue Box Recycling	1,025.96	BRA
Brush Material	32.98	Town of St. Mary's
Leaf and Yard Waste	50.03	Town of St. Mary's
E-Waste	2.98	Greentec
Wood Waste	132.61	Town of St. Mary's
Scrap Metal	10.62	Robson Scrap Metal
Total	1,255.18	

MARCH 2023

The above noted totals are generally consistent with previous reported totals. In total, 1,255.18 tonnes of material were diverted from the landfill during the current reporting period. It is important that the Town continues to reduce the volume of waste entering the landfill to save landfill capacity as well as divert unacceptable material from being disposed on site.

6. SUMMARY OF GEOLOGIC SETTING

The geologic conditions at the St. Mary's landfill site have been extensively reviewed as part of previous investigations at the Site and surrounding area. The conditions were presented in the 1992 hydrogeologic study for the site prepared by Conestoga-Rovers & Associates (CRA) and summarized in each of the subsequent Annual monitoring Reports. The geologic conditions at the St. Mary's landfill site were further evaluated using geologic mapping (Chapman and Putnam, 1984) and available borehole logs. Geological properties are summarized in the borehole logs prepared by various other consultants, which are provided in Appendix H.

Key findings of the geologic setting, as provided in the previous Hydrogeologic Assessment and Annual Reports, are summarized below. A summary of the monitoring well locations and well details is provided in Table 1. Additional investigations with respect to the geology of the area were conducted using information from the Ontario Geological Survey (OGS) Open File Report 6191 – An Updated Guide to the Subsurface Paleozoic Stratigraphy of Southern Ontario.

6.1 Topography

The topography around St. Mary's is generally sloping towards the North Thames River and its tributaries. However, the topography on-site is a result of ongoing landfilling activities and historical activities connected to St. Mary's Cement (SMC) operations. These activities include clay mining over most of the Site, overburden stripping and stockpiling east of the watercourse, cement kiln dust stockpiling and rerouting of the watercourse.

The Site has been impacted by industrial activity since the 1960s when the quarry operation to the north began encroaching into what is now the landfill site. It is likely that there were impacts to the groundwater prior to that time due to quarry dewatering. Most of the Site was then disturbed by the SMC borrow pit that mined clay for cement manufacturing. According to the previous AMRs, the borrow pit operations at the Site ended in 1977.

The highest onsite elevation is the cement kiln dust (CKD) stockpile that is situated at an approximate elevation of 334 masl at its highest point (refer to Figure 2). The highest elevations of the fill areas are approximately 327 masl at Phase I and 329 masl at Phase II/III. The lowest elevations on the Site occur along the watercourse. The channel enters the east side of the Site at an elevation of approximately 310 masl and exits the northwest end below 309 masl. The elevation change between SP1-10, the surface water sampling location at the east end of the Site and SP3-93, near the north end, is approximately 1.5 m. This is over a distance of about 660 m resulting in a grade of approximately 0.2%.

Perth County Road 123 is a topographic ridge on the west side of the Site and acts as a drainage divide. West of the ridge, runoff flows west toward the North Thames River. East of the road, runoff is directed east toward the stormwater retention basins and the central watercourse.

MARCH 2023

Surface water from the cover of the Phase I area is directed through a series of perimeter ditches and swales to channels that enter stormwater Basin A (refer to Figure 2). Surface water from the cover and perimeter of the Phase II/III area is directed to stormwater Basin B by a corrugated steel pipe (CSP) beneath the access roadway. These stormwater basins attenuate peak flows during storm events and allow sedimentation. Based on information provided by the Town, sediment was previously removed from the stormwater control basins during onsite work completed in the fall of 2007. No sediment removal has been undertaken or deemed necessary since that time. Swales, culverts, and outlets are inspected by Town staff on a regular basis to ensure surface water flow is maintained.

The stormwater basins outlet to the watercourse via corrugated steel pipes (CSP). The watercourse leaves the Site through a culvert under Perth Road 123 and eventually discharges into the North Thames River, approximately 500 m downstream of the Site.

Upstream of the Site, the watercourse divides into two branches. The north branch skirts the south edge or the SMC quarry and drains industrial properties and agricultural fields east of the Site. The south branch occupies a vegetated channel between the agricultural fields and the excavated/filled areas on the SMC property. It drains industrial and agricultural land further south and east before crossing James Street and Elginfield Road (Highway 7). According to the previous Hydrogeological Report (CRA), the watercourse drains an approximate area of 607 ha.

6.2 Overburden Soils

The surficial geology of the area is presented on Figures 3 and 4. The regional overburden consists of fine-textured glaciolacustrine deposits and till. In terms of physiographic landforms, the Site exists on undrumlinized till plains. Based on a review of geologic mapping, the surficial materials of the site are characterized as Tavistock Till, glaciolacustrine deposits, and glaciofluvial outwash deposits to the south. Tavistock Till consists of sandy silt to silty clay matrix. Glaciolacustrine deposits consist of silt and clay and minor sand, and glaciofluvial outwash deposits consist of gravel and sand.

Consistent with a review of geologic mapping, nearby well records and on-site monitoring well and borehole logs recorded by Conestoga-Rovers & Associates indicate that overburden materials in the area are most commonly described as clayey silt till and sand with gravel.

Cross-sections have been created based on existing logs from the on-site monitoring wells and boreholes. The locations of the sections are shown in Figure 8 and the cross sections are shown in Figures 9-12.

6.3 Bedrock

The overburden of the Site is underlain predominantly by dolomitic limestone of the Dundee Formation which is characterized by grey to tan-brown fossiliferous limestone and minor dolostone. Based on a review of the hydrogeological information that has previously been presented, the Dundee Formation is further underlain by the Lucas Formation of the Detroit River Group. The Detroit River Group consists of three formations, the shallowest being the Lucas Formation, followed by the Amherstburg Formation, and the deepest being the Sylvania Formation. Bedrock of these formations is characterized by tan to grey-brown to dark brown, commonly cherty, fossiliferous limestones, dolostones, and minor shales.

Consistent with a review of the available geologic mapping, nearby well records indicate that the bedrock in the area is most commonly described as grey to brown limestone. Based on nearby well records and bottom depths of on-site monitoring wells, the average depth to bedrock is approximately 30 m below ground surface (mbgs), or at approximately 295 to 300 masl on-site.

MARCH 2023

7. SUMMARY OF HYDROGEOLOGIC SETTING

Based on the findings of the previous Annual Reports, Hydrogeologic Study, and GMBP review, the limestone bedrock forms the primary aquifer and represents the primary water supply in the area. The Town of St. Mary's municipal wells and the majority of private wells in the area use the bedrock aquifer. The regional bedrock groundwater flow is east to west, and the inferred on-site bedrock groundwater flow follows that direction, as shown in Figure 7. The St. Mary's Cement plant is located northeast of the Site within a former limestone quarry. This quarry and the active quarry, located northwest of the Site, across the Thames River, are currently dewatered by pumping systems which discharge to the Thames River.

The North Thames River is west of the Site and at an elevation of approximately 296 masl. According to the Thames-Sydenham and Region Watershed Characterization Summary Report (2008), the upper branches of the Thames River (North, Middle, and South) flow through pre-existing glacial spillways. The elevation of the North Thames River is potentially above the surface of the bedrock and also above the bedrock groundwater level. The top of bedrock at OW32A-02, the closest on-site monitoring well, is at an elevation of 294.35 masl and the water level is at an elevation of 284.51 masl (Fall 2020). At a nearby monitoring well (5001487) just across the river, the top of bedrock is at an elevation of approximately 263.65 masl, and the water level is at an approximate elevation of 261.52 masl. Based on these values, there doesn't appear to be direct groundwater discharge from the bedrock to the river, near the landfill site.

There are no regional overburden aquifers near the Site. The previously completed documents pertaining to the landfill property also specify that Thames-Sydenham and Region Watershed Characterization Reports indicate that overburden aquifers in the area are sparse and limited to alluvial sands and gravels deposited along rivers and streams. Locally, shallow dug wells are documented to occur in the shallow sand and gravel overburden.

A review of previous AMRs and historical groundwater elevation data indicates that the site is in an area with downward gradients. Based on the relatively low permeability and complex layering of overburden deposits, overburden water levels are relatively complex but overall indicate a consistent gradient towards the central watercourse. Onsite, shallow groundwater has been measured at varying levels from 3.27 mbgs (OW9B-91) to 12.71 mbgs (OW33-96) in the overburden wells, while some overburden wells are consistently dry and have been dry since the time of their installations (OW3-84 and OW6-84).

7.1 Water Level Monitoring

Groundwater level measurements are recorded at the location of each on-site monitoring well prior to sampling during each monitoring event. The locations of monitoring wells are presented on Figure 2. Well logs are contained in Appendix H and construction details are contained in Table 1. Historical measured water levels are presented in Table 3. The measured water levels indicate typical seasonal fluctuation. Most of the monitoring wells completed in the shallow overburden display similar amplitudes of 0.5 to 2.0 m in seasonal fluctuations, with the highest water levels typically in the spring. Overburden wells completed in the till or in deeper sand and gravel generally display much less variation than those in the shallow overburden, typically less than 0.5 m in seasonal fluctuations. The water levels in these wells are relatively stable over time.

The water levels in the bedrock wells show a seasonal fluctuation that ranges from 1.0 to 3.0 m. The highest water levels typically occur in the spring. The bedrock wells indicate a slight downward trend in water levels over time.

MARCH 2023

Anomalous water levels have been measured at OW8A-91 in recent monitoring years. The historical average groundwater elevation at OW8A-91 is 287 masl; however, water levels in the range of 313 masl have been reported since the spring of 2019, with the exception of a water level of 296 masl in spring 2021. OW8A-91 is completed in the bedrock at a depth of 281.89 masl and is located in a low-lying, swampy area of the landfill, where ponded water conditions are observed at certain periods of the year. The exact reason for the significant fluctuations and the high measured water levels at OW8A-91 is unknown but is currently suspected to be related to the well seal, and/or well integrity issues (i.e., a connection with shallow groundwater conditions through a breach in the casing). It is clear that this water level cannot physically occur based on the historical change and relative elevation to the bedrock locations (i.e., a change of 25 m). Based on field review completed during the onsite sampling events, there was no evidence of such a breach (beyond high water levels). The anomalous water level data from this well is not used in determining groundwater elevations and/or flow direction within this report as it is deemed questionable/inaccurate. Additionally, the well was inaccessible for water level measurement during the Fall 2022 sampling event. If the reason for the questionable water level data at this location cannot be determined and repaired, removal of OW8A-91 from the monitoring network is recommended.

7.2 Overburden Groundwater Flow System

Overburden water table contours and flow direction, based on the water levels measured in the overburden monitoring wells at the time of the spring sampling program and in monitoring wells that were previously measured at the time of the April 2017 measurements, are shown in Figure 6. In developing this figure, the groundwater elevation at OW33-96 has not been used because this monitor is screened in the deep till, at a depth that does not reflect shallow groundwater conditions. It is noted that the groundwater elevations measured in April 2017 for MW04-01, MW04-02, and MW04-03 were used as elevation points for the east side of the Site to provide additional groundwater elevation information since those monitoring wells are no longer accessible for annual measurement.

The overburden groundwater flow direction is generally toward the watercourse east of the fill areas. The groundwater from the observation wells, west of the watercourse, flows in a generally east direction (northeast at the south end and southeast at the north end) toward the watercourse. The groundwater from the monitoring wells (2017), east of the watercourse, flows in a generally southwest direction, toward the watercourse.

The inferred flow direction indicates that the overburden wells to the west, north, and south of the Site are hydraulically upgradient of the landfill, and the overburden wells to the east are hydraulically downgradient.

The horizontal hydraulic gradient west of the watercourse is approximately 0.02 to 0.07, calculated from the current water level measurements. The measured gradient is similar to those noted in previous years. The horizontal hydraulic gradient east of the watercourse ranged from approximately 0.04 to 0.09 in 2022, with the steepest gradients occurring on the south side of the CKD stockpile. This is similar to gradients noted in previous reports.

7.3 Bedrock Groundwater Flow System

Bedrock water table contours and flow direction, based on the water levels measured in bedrock wells at the time of the fall sampling program, are shown in Figure 7. The flow direction across the landfill is inferred to be toward the west-northwest. The horizontal hydraulic gradient ranges from approximately 0.002 to 0.005. The current water level data (besides the anomalous data at OW8A-91) and bedrock groundwater flow is consistent with previous years. OW32A-02 was inaccessible during the current sampling period and therefore the elevation point is based on the fall 2020 water level.

MARCH 2023

The inferred flow direction indicates that OW8A-91 is up-gradient of the fill area, while OW32A-02 is downgradient of Phase I and OW9A-91 is down-gradient of Phase II/III. This is generally consistent with the findings presented in previous reports.

7.4 Vertical Groundwater Movement

The on-site observation wells include seven pairs of nested wells. A nest consists of wells in close proximity to each other that are completed to different depths. Estimates of the vertical groundwater gradient between wells in the same nest allow for an assessment of the potential for vertical movement of water between flow systems.

Vertical gradients for the current monitoring year for four of the well nests are calculated in Table 9. The other three nests are not included in this table because at least one well in the nest was dry during either the June or November sampling event. However, due to dry conditions noted during the monitoring period water level measurements were not obtained at the nest consisting of OW4-84 and OW7-91. Consistent with previous years, the well nests exhibit downward gradients. Two well nests with measurable water levels displayed downward gradients consistent with previous calculated results, while OW8A/8B nest showed a slight upward gradient during the spring. The nests that compare an overburden well and a bedrock well indicate that the groundwater elevations in the overburden wells are consistently much higher than the groundwater elevations in the bedrock wells. The magnitude of the gradients is not always meaningful because of dry soils between shallow and deep wells.

The fourth nest compares two wells in the overburden at the location of OW33-96 and OW34-96. Both wells are reported to be completed in the aquitard but at different depths. The relatively high downward gradient of 1.47 in May supports limited hydraulic connection between the shallow and deep overburden, consistent with the occurrence of the low-permeability till between the shallow and deeper well.

8. MONITORING

8.1 Sampling Requirements

8.1.1 Groundwater

The St. Mary's Landfill Site is monitored through a network of 18 groundwater monitoring wells and 5 private wells, as shown on Figure 2. The following table provides a summary of the installation dates for the wells that are currently in the onsite groundwater monitoring network sorted by their year of installation:

	Gro	oundwater Wells		
1984	1991	1996	2002	2016
OW2-84	OW7-91	OW32-96	OW32A-02	OW36
OW3-84	OW8A-91	OW33-96		
OW4-84	OW8B-91 (Abandoned and replaced by OW8B-10)	OW34-96		
OW5-84	OW9A-91			
OW6-84				

Currently, groundwater samples are collected from all 18 monitoring wells located on the landfill property as well as from MHB, which was reportedly sampled for the first time in May 2015 and was added to the monitoring program in 2016. As per Condition 23.0 of the C of A, the monitoring network is sampled in the spring and fall of each year.

GMBP FILE: 318007 **MARCH 2023**

The groundwater monitoring program currently consists of:

- Water levels measured in all groundwater wells and MHB
- Field measurement of pH, conductivity, and temperature measured in all groundwater wells and MHB
- Samples collected for chloride, hardness, phenols, DOC, calcium, magnesium, alkalinity, sodium, nitrate, and nitrite from all groundwater wells and MHB
- OW2-84, OW4-84, OW5-84, OW8B-10, OW9B-91, OW15-91, OW21-91, OW25-91, OW32-96, OW33-96, OW34-96, OW32A-02, OW36, and MHB are sampled additionally for ammonia, TKN, sulphate, boron, iron, manganese, and BTEX (benzene, toluene, ethyl benzene, and xylene)

A summary of the analytical parameters and the groundwater quality results from the current monitoring year are provided in Tables 6 and 7. Historical summaries of the groundwater monitoring results, and trend graphs are provided in Appendix D.

8.1.2 Surface Water

The surface water monitoring at the St. Mary's Landfill Site consists of 8 locations, which are sampled twice annually occurring once in the spring and once in the fall. The surface water sampling locations, shown in Figure 2, are as follows:

Surface Water Locations			
Onsite Watercourse Basin A Basin B			
SP1-10* (upstream)	SP3A-94 (inlet)	SP1B-94 (inlet)	
SP2-93 (midstream)	SP4A-94 (outlet)	SP2B-94 (outlet)	
SP3-93 (downstream)	SP5A-94 (inlet)	, , ,	

^{*} It is noted that SP1-10 replaced SP1-93 and is located at the updated property boundary between the landfill and the St. Mary's Cement property resulting from a property transfer in 2009. The surface water monitoring program currently consists of:

- Water levels measured and/or flow conditions recorded at all surface water locations
- Flow measurement at SP3-93
- pH, conductivity, and temperature measured in all surface water locations
- Samples collected for chloride, hardness, phenols, BOD, ammonia, turbidity, TDS, suspended solids, total phosphorous, calcium, magnesium, sodium, alkalinity, nitrate, nitrite, iron, and manganese at all surface water locations
- Reporting of sediment build up in stormwater management ponds Basin A and Basin B

A summary of the historical surface water sampling results are provided in Appendix E.

8.1.3 Leachate Monitoring

The leachate collection system discharges to the municipal sanitary sewer. In order to support discharge and evaluate the performance of the landfill, the leachate monitoring program at the St. Mary's Landfill Site includes:

- Measurements to leachate or qualitative observations of flow conditions in all leachate collection system
- Samples collected for BOD, ammonia, COD, chloride, phenols, nitrate, phosphorous, TKN, total suspended solids, alkalinity, sulphate, calcium, magnesium, aluminium, barium, beryllium, bismuth, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, potassium, silver, sodium, strontium, tungsten, vanadium, zinc, and VOCs from MH1 (Phase I) and MH3 (Phase II/III).

MARCH 2023

A summary of the historical leachate monitoring and sampling results is provided in Appendix F.

8.2 Sampling Procedures

For the groundwater sampling, the static groundwater level and well depth are measured in each monitoring well. Each monitoring well is then purged of three casing volumes of stagnant water or until dry, whichever occurs first. After purging, monitoring wells are allowed to recharge with fresh groundwater before sampling occurs. Groundwater purging and sampling is conducted using dedicated Waterra™ tubing and inertial-type pumps. As per the C of A, pH, conductivity, and temperature are measured in the field at each sample location.

Surface water samples are collected by submerging the appropriate sample container into the water body and removing the container when a sufficient volume of sample has been collected. During collection, contact with the bottom of the water body is avoided to prevent stirring-up sediment. When collecting surface water samples, direct dipping of the sample bottle is completed unless the bottle contains preservative. For those samples requiring preservative, a clean unpreserved bottle is used to obtain the sample at each location, and then it is transferred into the appropriate preserved bottle. Field parameter measurements, such as the temperature, pH, conductivity, flow, and sediment build-up are measured and recorded at the time of sampling.

Leachate samples are collected from the manhole using a dedicated bailer. The bailer is lowered into the manhole and the sample is transferred directly into the laboratory provided containers. Samples that are collected for analysis of the selected metals are placed in unpreserved laboratory supplied containers. Sample filtration and the addition of the lab-preservative occur prior to laboratory analysis.

Samples are kept chilled following completion of the sampling program and sent within 24 hours of the sampling event to AGAT Laboratories of Mississauga for analysis. The laboratory Certificates of Analysis are included in Appendix G.

8.3 QA/QC

The Relative Percent Difference (RPD) was calculated to determine the variance between the actual sample and the replicate sample using the following equation:

RPD = $(sample result - duplicate result) \times 100$ (sample result + duplicate result) ÷ 2

Values which exceed a RPD of 20% are considered 'unacceptable'.

A summary table showing the monitoring results for these samples and the associated RPD values is provided as Table 11.

MARCH 2023

8.4 Background Groundwater Quality Summary

OW2-84, OW25-91 (overburden), and OW8A-91 (bedrock) are located hydraulically up-gradient of the fill areas and have been used as the background monitoring wells for the Site. The results from these wells are used for calculating the Reasonable Use Criteria (RUC).

OW2-84 is the most northwestern overburden well and is located along the property boundary and considered to be hydraulically upgradient (i.e., northwest) of the Phase I fill area. OW2-84 is screened within a sand and gravel unit approximately 9 to 10 mgbs. OW25-91 is the most southern overburden well and is located along the south property boundary hydraulically upgradient of the Phase II/III fill area. OW25-91 is screened in the silt with some sand and gravel (inferred to be till) at approximately 9 to 10 mbgs and a similar elevation to OW2-84 (approximately 312 to 313 masl).

OW8A-91 is the most southern onsite bedrock monitoring location and is located east of the Phase II/III fill area, approximately 250 m from the eastern property boundary. Since the groundwater flow is inferred to be in a westerly direction within the bedrock system, this well is considered to be upgradient of the landfill.

The range of concentrations reported for primary and secondary leachate indicator parameters over the last 10 years for the background wells are summarized in Table 5. TKN was previously added to the overburden groundwater monitoring program and iron and manganese were added at select wells, including OW25-91. Therefore, these ranges are based on the available data during the recent monitoring periods.

The overburden background concentration utilized for calculation of the RUC is the average concentrations of each leachate indicator parameter measured at OW2-84 and OW25-91 from 2012 to the current monitoring period.

The geochemical signature of the background water quality in the overburden is considered typical of groundwater conditions in a carbonate-rich system with minor influence from anthropogenic sources. Chloride concentrations are typically at or below 10.9 mg/L and sodium concentrations are reported to be below 25 mg/L. Hardness varies between 116 and 706 mg/L with an average concentration of 243 mg/L. The elevated hardness is considered to be naturally occurring and is related to the typical mineralization of the natural groundwater in the area of the site. Alkalinity varies from 140 to 320 mg/L with an average concentration of 290 mg/L. Overall, the nitrogen (nitrate, nitrite, ammonia, and TKN) concentrations are relatively low and show little impact from anthropogenic sources. The DOC is reported to vary between 0.6 and 3.5 mg/L with an average of 1.6 mg/L, suggesting naturally occurring levels of DOC in the shallow groundwater.

Based on the current and historical groundwater data from the background monitoring wells, the concentration of hardness (as CaCO₃) in the natural groundwater is elevated and consistently exceeds the criteria identified in the ODWS. In general, the background groundwater quality at the site is considered to be relatively highly mineralized with consistently low alkalinity concentrations across the Site, with relatively low levels of typical anions and metals.

The bedrock background concentration for each leachate indicator is the average concentrations of OW8A-91 from 2012 to the current monitoring period. Comparison of the overburden and bedrock chemistry indicates that the bedrock is more mineralized than the shallow groundwater. This is considered typical within Southern Ontario within carbonate bedrock systems. A review of the indicator parameters and general chemistry at OW8A-91, OW-7, and OW-32A-02 indicates the primary contributing factors to increased mineralization are increased calcium and magnesium. At these locations, elevated sulphate is coupled with an increase in calcium and magnesium (i.e., hardness) and sodium, with low chloride (typically less than 20 mg/l) and this is consistent with the occurrence of calcium and magnesium sulphate minerals, such as gypsum, commonly found in the carbonate bedrock systems. This contrasts to scenarios of increased hardness due to salt (increased chloride) or dissolution of carbonate minerals, where alkalinity would also tend to increase.

MARCH 2023

Chloride concentrations were typically less than 20 mg/L at OW8A-91 prior to the anomalous water levels beginning in 2019. Since that time, chloride concentrations have consistently ranged from 20 mg/L to 50 mg/L. These conditions will continue to be monitored along with the anomalous water levels.

The reported average for DOC was approximately 6.4 mg/L, again showing natural occurrence of DOC in the bedrock system. No evidence of anthropogenic impacts were noted in the bedrock wells with the nitrogen (nitrate, nitrite, ammonia, and TKN) with combined concentrations reported to be below 1.5 mg/L. The relatively low levels of nitrogen species present are considered to be naturally occurring and associated with organic content, noted by the DOC concentrations.

9. LEACHATE CHARACTERIZATION

Leachate is produced when surface water percolates down through refuse resulting in impacted water that has the potential to migrate along the surface or in the ground. Landfill derived leachate that enters into the surface water and/or groundwater is often attenuated by natural mechanisms along the water migration pathway. The attenuation of leachate can occur by dilution, biologic activity, and geochemical mechanisms.

9.1 Leachate Quality Data

Currently, leachate monitoring is conducted at MH1 (Phase I) and MH3 (Phase II/III) through sampling and analytical testing, as well as qualitative observations in all other leachate collection manholes on the landfill site. Leachate monitoring is conducted in the spring and fall by GMBP personnel in conjunction with the groundwater and surface water sampling programs, in accordance with the ECA. Table 12 provides the VOC analytical results for the manhole samples collected during the spring and fall sampling.

MH 1 (Phase I) provides catchment for leachate generated within Phase I of the landfill and MH 3 provides catchment for leachate generated within Phase II/III. The analytical results for leachate samples collected at the manholes provide insight on compounds present in the leachate generated on the site and on the strength of the leachate going to the sewage treatment plant.

It has been noted in previous reports that the leachate flow conditions observed during sampling events are typical for the site. Samples of the low flow to stagnant conditions in the manholes may not provide accurate results of the leachate characteristics within the fill areas, and the assessment of the sample analysis should be conducted with this in mind. During the current reporting period, there was insufficient volume of leachate for sampling at both MH1 (Phase I) and MH3 (Phase II/III) at the time of the spring and fall sampling events. Therefore, the following discussion pertains to the available leachate results from the manholes for the most recently available analytical data.

Phase I leachate sampling began in 1991, approximately two years before the phase was completed. Phase I was active for 9 years. Phase II/III has been active for 25 years and has a greater volume of waste than Phase I.

Chloride was identified during the 1992 investigation as the critical contaminant for evaluation of groundwater impact. The chloride concentration in Phase I has declined from the highest recorded concentration of 760 mg/L in 1991 to 133 mg/L in 2019, which is the most recently available data (refer to Table 12). MH3 was dry at the time of the current sampling program but the Phase II/III chloride concentration in 2021 (i.e., most recently available data) was 227 mg/L, which represents a relatively significant decrease when compared to the previous high concentration of 608 mg/L measured in 2019 and 1,750 mg/L that was measured in 2017. The reported concentrations are high, but it is important to note that they are within the typical historical range and are consistent with long-term trends at this location. In general, the chloride levels are typical for landfill leachate and are consistent with recent values for both Phase I and Phase II/III.

MARCH 2023

VOC testing completed during previous monitoring years detected low levels of BTEX parameters in the leachate from both landfill phases. There have been sporadic occurrences of BTEX parameters since 1991. In previous monitoring years, Xylene concentrations were measured in the Phase I collection system but remained well below the sewer use by-law requirements. The BTEX concentrations measured in the Phase II/III system during previous monitoring years remain consistent with historical trends.

Other VOCs that have been detected in the Phase I and/or Phase II/III leachate include chlorobenzene and methyl ethyl ketone. Chlorobenzene was previously detected in Phase I in 2019 within the historical limit (2.20 μ g/L), and methyl ethyl ketone, which was detected in Phase II/III during the 2021 monitoring year (26.8 μ g/L). Both chlorobenzene and methyl ethyl ketone are within the historical ranges for the leachate.

Historical leachate sampling results are presented in Appendix F.

The leachate characteristics are considered typical with several parameters elevated. Elevated concentrations are evident for the suite of standard leachate indicator parameters including, chloride, alkalinity, organic (BOD/COD), nitrogen (as ammonia and TKN), calcium, magnesium, sodium, iron and manganese. The elevated iron and manganese, which are ubiquitous in the environment, are typically elevated due to the low pH and low Eh conditions of the leachate, which control the solubility of most metals. Reducing conditions are typically created through the degradation of organic compounds in waste, creating anaerobic conditions and the production of organic acids, causing dissolution of carbonate minerals (i.e., increases to alkalinity, calcium and magnesium). Reducing conditions can be inferred due to the relative occurrence of ammonia versus nitrate and ammonia.

While chloride concentrations are elevated (i.e., an average of 327 mg/L and 1,171 mg/L at MH-1 and MH-3, respectively), it is noted that the chloride concentrations are coupled with increased alkalinity and a relative sodium increase in the range of 1 to 1.5 to 1 (chloride to sodium). These specific characteristics are shown below:

Parameter	MH-1	MH-3	Overburden Background
		Average Concentra	tion (mg/L)
Chloride	327	1,171	7.2
Alkalinity	1,549	3,711	225
Sodium	274	891	17
Cl:Na Ratio	1.2	1.3	0.4

As noted in the previous reports, a temporary increasing trend was noted through increased BTEX concentrations that were previously reported from 2010 to 2012. Based on a review of more recent analytical data, the apparent increase in BTEX concentrations has not been repeated since that period and measured concentrations have reduced to typical background levels. Ongoing monitoring for BTEX as part of the established monitoring program is recommended to further evaluate if an increasing trend becomes apparent in any of the onsite monitoring wells.

MARCH 2023

9.2 Leachate Indicator Parameters

As part of our data review, an analysis of the leachate quality and comparison to the background groundwater quality at the site was conducted. Based on our assessment and on previous reports, the list of leachate indicator parameters for the Site includes the following:

- Chloride, nitrogen, total phosphorus, manganese, and iron
 - In leachate, nitrogen appears in the form of ammonia (reduced) and TKN; In groundwater nitrogen appears in the form of nitrate and TKN. Nitrogen (nitrate, nitrite, ammonia and TKN) is considered to provide potential indications of nutrient impact to groundwater from landfill leachate.
 - Alkalinity is consistently low in the background groundwater and is considered a good indicator to assess potential influence from leachate. Continued monitoring and trend analysis of alkalinity is recommended as an increasing trend would be useful for identifying leachate influence.
 - While sodium is naturally occurring at varied concentrations at the site, it is recommended to analyse for sodium at all locations where chloride is measured to help differentiate the potential sources of chloride.

10. WATER QUALITY RESULTS

To determine the presence or potential impacts from leachate, several indicator parameters are monitored and a trend analysis is conducted to determine changes in water quality over time. The following sections discuss the potential impacts to groundwater and surface water both on-site and leaving the property boundaries, and discuss compliance with the Reasonable Use Criteria. To evaluate potential impacts, several different points of reference were used for comparison including:

- 1. Comparison to RUC values;
- 2. Comparison to groundwater quality in all background monitoring wells;
- 3. Evaluation of long-term analytical trends at each monitoring location; and
- 4. Comparison of the suite of elevated parameters to the leachate indicator parameters, as established in Section 9.2 of this report.

Section 10.1 discusses potential impacts to groundwater downgradient of the active landfill area, the potential impacts to groundwater leaving the property boundaries, and compliance with the Reasonable Use Criteria. The analysis for the presence/absence of leachate-derived impacts to groundwater includes an evaluation considering the general water chemistry, which includes the metals, natural organic, and inorganic analytes. The groundwater quality results, including a comparison to the RUC, are summarized in Tables 6 and 7 for bedrock and overburden wells, respectively. Historical groundwater sampling results and graphical trends of indicator parameters are included in Appendix D.

Section 10.2 discusses potential landfill impacts to surface water both on-site and leaving the property boundaries, and compliance with the Provincial Water Quality Objectives (PWQO). The analysis for the presence/absence of leachate-derived impacts to surface water includes an evaluation considering the general water chemistry, which includes the metals and inorganic analytes. The surface water quality results, including a comparison to the PWQO and Aquatic Protection Values (APV), are summarized in Table 8. Historical surface water sampling results and graphical trends of indicator parameters are included in Appendix E.

MARCH 2023

10.1 Groundwater Quality Results

Groundwater samples are collected twice per calendar year, in the spring and in the fall. During the current monitoring period, the sampling occurred in May and October. Tables 6 and 7 summarize the chemical analyses from the current reporting period and compare the results to Ontario Drinking Water Quality Standards (ODWS). These standards and the background water quality were used to calculate the Reasonable Use Criteria. Reasonable Use concentrations apply only to boundary wells but were compared to the results from all wells to help evaluate overall water quality.

The chemical analysis for monitoring wells located near the on-site watercourse can also be compared to the Aquatic Protection Values (APV) to indicate how groundwater discharge can impact surface water quality. The only shallow wells near the surface water channel are OW4-84 and OW36, however OW4-84 was dry in the spring and fall. The APV comparison is discussed further in section 10.2: Surface Water Quality Results.

Chloride is the primary indicator parameter used to determine landfill impacts on groundwater. Chloride concentrations reported during the current monitoring period are shown on Figure 5. Time versus concentration graphs for leachate indicator parameters chloride, hardness, DOC, iron, boron, and manganese are included in Appendix D. Historical groundwater quality data tables are included in Appendix D.

10.1.1 Up-gradient and Cross-gradient Water Quality

Overburden wells OW9B-91, OW15-91, OW21-91, OW32-96, OW33-96, and OW34-96 are up-gradient of, or cross-gradient to the landfill footprint. Bedrock well OW7-91 is up-gradient to Phase I and cross-gradient to Phase II/III. The locations of the onsite monitoring wells are presented on Figure 2.

Phase I Overburden (OW32-96, OW33-96, OW34-96)

OW32-96 is located up-gradient of Phase I; OW33-96 and OW34-96 are located cross-gradient to the Phase I fill area. The groundwater chemistry at these wells is summarized in Table 7.

None of the above noted monitoring wells display evidence of impacts from landfill leachate. The Chloride concentration has been variable at these locations, with the highest concentrations noted at OW32-96 closest to the County Road, where a generally increasing trend is also noted. However, it is important to note that the alkalinity at all three locations typically remains below 300 mg/L with a stable long-term trend, suggesting that the chloride is not related to landfill leachate. A comparison of the chloride:sodium ratio at OW32-96 is 3:1 and 2:1, in the spring and fall sampling events, respectively. These ratios are consistent with road salt application for de-icing and/or dust suppression. Elevated hardness (relative to background) is noted at these same locations. The hardness concentrations correlate with the chloride concentrations. Therefore, it is reasonable to expect that the increased hardness is a result of the sodium, calcium, and/or magnesium addition in salt and/or subsequent ion exchange.

Iron concentrations were below the 0.025 mg/L for all three of the monitoring locations during the current monitoring period. Historical trends indicate iron concentrations are variable with no apparent trend. Manganese concentrations were reported between <0.002 and 0.011 mg/L during the current monitoring period, which remain below the RUC. During previous monitoring years, elevated iron and manganese concentrations were periodically measured above the RUC. Based on a review of the analytical findings over the past several years, the fluctuating iron and manganese concentrations are considered to be anomalous findings. Ongoing monitoring and analysis will continue to be completed to determine if a trend becomes apparent.

MARCH 2023

Phase II/III Overburden (OW9B-91, OW15-91, OW21-91)

OW9B-91, OW15-91, and OW21-91 are located up-gradient of Phase II/III. The groundwater chemistry at these wells is summarized in Table 7.

Consistent with groundwater flow direction, no impacts from landfill leachate are apparent. However, increasing influence from road salt applications (road de-icing and dust suppression) has become apparent in recent years.

It is noted that a separate evaluation of the monitoring wells and groundwater quality near the west property boundary was previously completed in June of 2018, and was provided for Ministry review under separate cover at that time. This evaluation pertains directly to monitoring wells OW9B-91, OW15-91, and OW21-91. A summary of the evaluation and findings is provided as follows:

OW9B-91, OW15-91, and OW21-91 are screened in the shallow overburden (silt till with sand and gravel) at depths ranging from 5 to 7 metres (16 to 23 ft.) below ground surface. Comparatively, the deep monitoring wells at the landfill site (i.e., OW9A-91) are screened in the bedrock at depths of greater than 30 to 40 metres (100 to 130 ft.) below surface. The groundwater in the shallow overburden unit is considered to have a higher potential for influence or impact from various anthropogenic sources (i.e., road salting, landfill leachate, spills, releases, etc.) The direction of groundwater flow in the overburden unit has been measured and documented to be from west to east across the subject property. The above noted monitoring wells are hydraulically upgradient of the landfill and are located outside of the limits of the perimeter leachate collection system. The monitoring wells are located directly adjacent to (east and downgradient of) the existing landfill access road and are hydraulically downgradient of Perth County Road 123. It is noted that the topography slopes downward from the road, which is situated at an approximate elevation of 330 metres above sea level (masl), to the landfill at an approximate elevation of 315 masl (a difference in elevation of about 15 metres {50 ft.}) with a pronounced slope extending downward at the location of the access road. Based on a review of the information provided, it is our understanding that the County Road and the landfill access road are salted during the winter months. Additionally, the Town reports that general maintenance of the access road has historically included the use and application of liquid calcium chloride brine during the non-winter months, which started in about 2011/2012 and continued until 2017 for dust suppression purposes. Reportedly, the calcium chloride liquid brine used at times included heavy applications to the landfill access roads directly adjacent to the westerly monitoring wells. Furthermore, the County maintains the adjacent Perth County Road 123, and reports that they have used a liquid magnesium chloride brine product known as *Meltdown*.

A detailed review and evaluation of the analytical results at the three identified monitoring wells was completed including a review of historical data and a long-term trend analysis at these locations. Additionally, a comparison of the results to the nearby shallow overburden monitoring wells and the accompanying deep overburden and bedrock wells was completed. Brief discussion and summation of each monitoring well is provided as follows:

OW9B-91

- From 1991 to 2011 (i.e., collection of 46 groundwater samples), the average calcium concentration measured was 19.8 mg/L,
- From the sampling event in December 2011 to the fall of 2017 (i.e., collection of 16 groundwater samples), the average calcium concentration increased to 152 mg/L and peaked at a concentration of 518 mg/L in 2013,
- Over the same period of time (1991 to 2011) and number of samples, the average chloride concentration measured was 7.6 mg/L,
- From 2011 to 2017, the average chloride concentration increased to 278 mg/L and peaked at a concentration of 426 mg/L in 2015, following the same trend as the measured calcium concetrations,
- The ratio of chloride to calcium measured in the groundwater between 1991 and 2011 was 1:3 and has since changed to a chloride:calcium ratio of just over 2:1.
- The average alkalinity over the last 4 years has remained relatively stable to slightly decreasing with an average concentration of 239 mg/L.

MARCH 2023

OW15-91

- From 1991 to 2012 (i.e., collection of 49 groundwater samples), the average calcium concentration measured was 21.4 mg/L,
- From 2012 to the fall of 2017 (i.e., collection of 12 groundwater samples), the average calcium concentration increased to 46 mg/L and peaked at a concentration of 98.8 mg/L in 2013.
- Over the same period of time (1991 to 2012) and number of samples, the average chloride concentration measured was 8.1 mg/L,
- From 2012 to 2017, the average chloride concentration increased to 97 mg/L and peaked at a concentration of 149 mg/L in 2017.
- The ratio of chloride to calcium measured in the groundwater between 1991 and 2012 was 1:3 and has since changed to a chloride:calcium ratio of 2:1.
- The average alkalinity over the last 4 years has remained relatively stable with an average concentration of 220 mg/L.

OW21-91

- From 1992 to 1998 (i.e., collection of 17 groundwater samples), the average calcium concentration measured was 32.9 mg/L,
- From 1998 to the fall of 2017 (i.e., collection of 39 groundwater samples), the average calcium concentration increased to 116 mg/L and peaked at a concentration of 202 mg/L in 2012. It is noted that a relatively steady downward trend is observed since the peak concentration in 2012 to a measured concentration of 85 mg/L in the fall of 2017,
- Over the same period of time (1992 to 1998) and number of samples, the average chloride concentration measured was 27 mg/L,
- From 1998 to 2017, the average chloride concentration increased to 250 mg/L and peaked at a concentration of 578 mg/L in 2017,
- The ratio of chloride to calcium measured in the groundwater between 1992 and 1998 was 1:1 and has since changed to a chloride:calcium ratio of just over 3:1.
- The average alkalinity over the last 4 years has remained relatively stable with an average concentration of 215 mg/L.

For reference, the long-term trends discussed above are presented in graphical form within the enclosed trend graphs. It is noted that the magnesium and calcium concentrations have followed a similar trend pattern. The attached long-term trend graphs provide a graphical presentation of the stable long-term trends between the inception of the sampling program to the identified period of time, contrasted by the relatively sudden increase in the calcium, magnesium, and chloride concentrations starting in about 2011 to 2012. Although the graph for OW21-91 displays a slightly different trend pattern than the other monitoring wells, the same increase in parameters is observed. It is noted that the range of dates and the measured increase in calcium, magnesium, and chloride concentrations corresponds to the Town's reported initial use of liquid calcium chloride brine for dust suppression on the landfill entrance/access road. Based on this evaluation, the measured increases reported at the locations of OW9B-91, OW15-91, and OW21-91 are attributed to the use of salt and not to impact from landfill leachate.

Bedrock (OW7-91)

OW7-91 is located east of the fill area and east of stormwater management Basin A, and is up-gradient of Phase I. The groundwater chemistry at this well is summarized in Table 6.

The leachate indicator parameters at OW7-91 were not recorded during the current monitoring period due to insufficient water for sampling, however recent results obtained from this well are similar to concentrations in background bedrock well OW8A-91. Historically, there has been no indication of landfill impact at this well.

MARCH 2023

10.1.2 Downgradient Water Quality

The down-gradient wells are located to the east of the landfill footprint. Groundwater flow in the shallow overburden is toward the east-northeast.

Phase I Overburden (OW4-84 and OW5-84)

OW4-84 is screened in the shallow overburden down-gradient of Phase I. OW5-84 is screened in the deeper sand and gravel below the till down-gradient of Phase I. OW4-84 was noted to be dry in both the spring and fall, therefore sampling data was not obtained for the current monitoring year. The groundwater chemistry results are summarized in Table 7.

Chloride levels at OW5-84 began exhibiting greater fluctuations in 2006 with a range of 15 to 63 mg/L. Prior to 2006, chloride concentrations at OW5-84 remained at background levels. During the current monitoring program, chloride levels continued to be slightly elevated at this location, with concentrations of 59.3 mg/L and 46.4 mg/L recorded in the spring and fall, respectively. The alkalinity concentrations since 2013 (i.e., the initial measurement period) have remained stable during the period, suggesting the potential for salt influence. The relative concentrations of other indicator parameters, such as DOC and TKN remain similar to background concentrations. Consequently, it appears that increases in chloride are more likely influenced by salting activities, as opposed to landfill leachate.

It is recommended to continue to monitor trends at this monitoring location to assess the potential for leachate influence.

The parameters measured at OW4-84 most recently in November 2021 are within the typical historical range.

Phase II/III Overburden (OW8B-10 and OW36)

OW8B-10 and OW36 are screened in the shallow till, downgradient of Phase II/III. The groundwater chemistry at these wells and at MHB in the current monitoring period is summarized in Table 7.

Concentrations of all parameters at OW8B-10 are at or slightly above background levels but are consistent with historical ranges. There is no indication of landfill impact at this well. Of significance, the measured chloride concentrations remain below 10 mg/L.

While hardness is elevated and reported to exceed the RUC at both of these wells, it is evident that this is related to sulphate mineralization, as demonstrated by the elevated sulphate (in the range of 276 to 464 mg/L) and calcium at OW36 (in the range of 124 to 134 mg/L), without significant increases in other indicator parameters. Chloride is slightly above the background concentration at OW36, with concentrations of 22.7 mg/L and 25.0 mg/L in spring and fall, which are well below the RUC of 129 mg/L. Consequently, no impacts to landfill leachate are evident.

Continued monitoring will establish the potential for impacts at these downgradient monitoring locations.

MHB (Phase II/III Overburden Manhole)

As previously reported, MHB was previously added to the monitoring program in 2016 to determine if the groundwater in a sand seam below the clay base of the landfill is being impacted by leachate. The groundwater chemistry at MHB is summarized in Table 7. MHB was sampled at the time of the spring and fall monitoring events.

MARCH 2023

Water quality results at MHB to present are compared to the RUC and to the PWQO in Table 10. As previously noted, the groundwater at the location of MHB represents water within a sand seam underlying the clayey landfill base and is subsequently conveyed into the onsite storm drain/creek, which is why the analytical results for this sampling point are also compared to the surface water criteria (i.e., PWQO). Based on the analytical results, the water quality at MHB appears to be somewhat influenced by salt (as with shallow groundwater). Chloride concentrations display a general stable to slightly increasing trend with values in the range of 87 to 141 mg/L. Relative to landfill leachate (Table 12), the water being measured at MHB has notably low alkalinity, in the range of 260 to 320 mg/L (similar to background), and low concentrations of ammonia (0.14 to 0.28 mg/L). This compares to the typical concentrations in the leachate at MH-3 that has an average alkalinity of about 4,000 mg/L, and an average ammonia concentration of 466 mg/L.

With respect to the potential for impacts due to discharge, it is noted that the phenols concentration of 0.061 mg/L, reported in the spring, slightly exceeds the PWQO of 0.001 mg/L. The water quality from MHB meets the PWQO for all other parameters analyzed. Historical exceedances of iron are noted. Overall, the water quality at MHB is considered to be similar to that of the background water quality in the central creek (SP1-10). The chloride concentrations at MHB are in the range of background water quality, which was measured to be 130 and 141 mg/L in the spring and fall, respectively. Ammonia is noted to be slightly higher in concentration than the background surface water quality samples.

It is recommended to continue monitoring MHB to ensure impacted groundwater is not discharged to surface water. To support monitoring and ongoing evaluation, nitrate and nitrite have been added to the parameter list for MHB. Both parameters were reported below the laboratory detection limits in the current monitoring period.

Bedrock (OW9A-91 and OW32A-02)

There are potentially two downgradient bedrock wells. OW9A-91 is located at the west portion of the property at the bottom of the slope of the entrance lane to the Site, downgradient of Phase II/III. OW32A-02 is located near the northwest portion of the Site and is adjacent to Perth Road 123. OW9A-91 and OW32A-02 were both inaccessible during each of the spring and fall monitoring events due to insufficient sampling materials. To allow the continued monitoring of these locations, new sampling materials will be installed to allow for the collection of future samples.

Historically, the parameters analyzed at OW9A-91 and OW32A-02 typically exhibit the same characteristics as the background bedrock well OW8A-91. The most recent measured chloride concentrations at OW9A-91 were 5.1 mg/L and 4.73 mg/L during the most recent monitoring period. There is no indication of landfill impact to the bedrock aquifer and based on the differing geochemical signatures and water levels between the bedrock and shallow overburden, it reasonable to expect a level of hydraulic separation between these units. This is consistent with the occurrence of silt till layer above the bedrock system.

10.1.3 Private Well Water Quality

Five private water supply wells are sampled as part of the approved monitoring program. The approximate locations of the private wells are noted on Figure 2. Historical analytical results are provided for reference in Appendix D. The well owners are provided with the results of their water test results annually. Copies of the laboratory reports for their well are sent by mail to each owner.

Private Well	Strata
PW1	Bedrock
PW2	Overburden
PW3	Bedrock
PW4	Bedrock
PW5	Bedrock

MARCH 2023

Overburden Private Wells

Historically, two overburden private wells (PW1 and PW2) had been monitored as part of the annual monitoring program. However, the overburden well at PW1 was replaced by a bedrock well in 2011.

The historical overburden PW1 was approximately 4.3 m deep (approximately 318.6 masl) with a removable lid. The well was not believed to be hydraulically connected to the overburden aquifer within the landfill because the water elevation within the well did not fluctuate during the previous dewatering activities at the Site. The historical results indicate that this well was highly susceptible to contamination from road salting activities. As reported above, during the 2011 monitoring period it was noted that the former well had been replaced with a bedrock well.

PW2 is located topographically higher than the Site and is considered to be in a hydraulically upgradient location as indicated by the shallow groundwater flow patterns. The reported depth suggests that it is completed at an elevation that is generally consistent with the meltwater material separating the upper and lower till.

As with overburden PW1, PW2 has displayed historically fluctuating levels of chloride. Chloride has ranged from 22 mg/L (May 1985) to 326 mg/L (September 2003). No samples were collected at PW2 during the current monitoring period due to access issues since the owner/occupant was not available. PW2 is reportedly susceptible to seasonal water level fluctuations and has occasionally become dry during summer months. In the past, a licensed water hauler has reportedly filled the well with imported water in such instances. Due to this, the integrity and meaningfulness of the analytical results from this monitoring location is somewhat questionable. Only five samples have been obtained in the last five years, due to the sampling point being inside the residence and due to restricted access. Based on recent analytical results available for this sampling point, chloride concentrations have remained within the typical historical range. The occurrence of the chloride is inferred to be associated with salt application along the road as opposed to landfill leachate.

To differentiate the potential sources of chloride, analysis of alkalinity and sodium has been added to the parameter list and will continue to be analyzed and evaluated once re-established and additional data becomes available for this location. It is noted that future sampling of this location will be conducted and submitted by the owner/occupant to the Town and the samples will be promptly submitted to the lab for analysis.

Bedrock Private Wells

Four bedrock private wells are monitored as part of the annual monitoring program and are located between the Site and the Thames River.

As previously reported, the overburden well at PW1 was replaced by a bedrock well in 2011. Prior to that, the concentrations of chloride, conductivity, hardness, and DOC in the new bedrock well are consistent with background levels in the bedrock.

Historically, PW3 has not been sampled due to the owner using the property as a seasonal recreational dwelling (i.e., a cottage), and therefore is rarely present to provide the necessary access. Within the last eight years, only three samples have been collected from May 2018, May 2022, and October 2022. The analytical results for these samples indicate that chloride, hardness, and DOC concentrations are generally consistent with historical concentrations. The reported chloride concentration is considered to be relatively elevated compared to other bedrock locations but is within historical levels. The chloride concentration at PW3 has been consistent since 2009, with concentrations around 60 mg/L.

The long-term analytical trends for the groundwater concentrations at PW4 have been generally stable and consistent with background concentrations. The chloride concentration has consistently been reported below 5 mg/L (similar to PW1).

MARCH 2023

The analytical results for PW5 indicate that chloride concentrations have fluctuated in recent years, typically with greater concentrations recorded in the spring and lower concentrations recorded in the fall. The most recent analytical findings indicate that the measured chloride concentration was 3.9 mg/L, which is consistent with background concentrations. Based on the consistent hardness and conductivity despite the chloride fluctuations, it is recommended to continue closely monitoring the annual results from this location.

Based on the analytical results for the private domestic wells from the available monitoring data, there is no indication of landfill leachate impact at the locations of the offsite wells.

To support differentiation of landfill impacts from natural conditions and road salting activities, analysis of alkalinity and sodium were added to the bedrock monitoring locations in 2019. Since that time, Alkalinity concentrations are within a range of 189 to 314 mg/L, and sodium is in the range of 27.9 to 37.0 mg/L, with the highest concentrations at PW4 and the lowest at PW1.

10.1.4 Reasonable Use

MOE Guideline No. B-7 *Incorporation of the Reasonable Use Concept into MOE Groundwater Management Activities*, 1994 states that:

In accordance with the appropriate criteria for particular reasonable uses, such as those specified in the Guideline B-1: "Water Management – Guidelines and Procedures of the Ministry of Environment", a change in quality of the groundwaters on the adjacent property will be acceptable only as follows:

Quality cannot be degraded by an amount in excess of 50 percent of the difference between background and the quality criteria for any designated reasonable use, except drinking water. In the case of drinking water, the quality must not be degraded by an amount in excess of 50 percent of the difference between background and the Ontario Drinking Water Objectives for non-health related parameters and in excess of 25 percent of the difference between background and the Ontario Drinking Water Objectives for health-related parameters. Background is considered to be quality of the groundwater prior to any manmade contamination.

The maximum allowable concentration (Cm) of chloride (a common indicator in landfill leachate) that would be acceptable in the groundwater at the property boundary is calculated as:

$$Cm = Cb + x (Cr - Cb)$$

The terms are defined as follows:

Cb – Background concentration of the particular contaminant in the groundwater before it has been affected by human activity. In this case, the average 10-year water quality at OW2-84 and OW25-91 was assumed to represent background overburden water quality; the average 10-year water quality at OW8A-91 was assumed to represent background bedrock water quality. The 2012 to 2022 average chloride concentration at wells OW2-84 and OW25-91 is 7.37 mg/L and the 2012 to 2022 average at OW8A-91 is 20.01 mg/L.

Cr – Maximum concentrations of the particular parameter in accordance with the Ontario Drinking Water Quality Standards (ODWQS). This value is 250 mg/L for chloride.

MARCH 2023

X – A constant that reduces the contamination to a level that is considered by the MECP to have only a negligible effect on the down-gradient use of the water. For chloride, a non-health related parameter, the factor is 0.5.

Therefore: Cm = 7.37 + 0.5 (250 - 7.37) = 128.69 mg/L (overburden)

Cm = 20.12 + 0.5 (250 - 20.12) = 135.01 mg/L (bedrock)

Chloride concentrations in downgradient monitoring wells can then be compared to this site-specific concentration. If leachate indicator parameters exceed the reasonable use in downgradient wells near the property boundary, it indicates that there may be existing potential off-site impacts. In addition to the RUC, a groundwater trigger level of 100 mg/L for chloride was previously established for monitoring wells that represent a boundary condition.

10.1.5 Comparison of Groundwater Chemistry to Reasonable Use

A review of the data indicates that the chloride concentrations recorded at all downgradient boundary wells were below the Reasonable Use Criteria and below the Site boundary trigger concentration of 100 mg/L with the except of MHB which underlies the landfill base and is more readily compared to surface water background conditions due to the nature of its contents and discharge location to the onsite watercourse.

The table below identifies the boundary and sentry groundwater sampling locations where leachate indicator concentrations were measured above the RUC during the current reporting period. These locations do not represent downgradient compliance monitoring locations. Hardness exceeded the RUC at most of the wells due to the natural mineralization of the groundwater, and therefore is not included in the table.

Location	Parameters above the RUC	Probable Cause
OW8B-10	Sulphate	Naturally Occurring Mineralization
OW9B-91	Chloride,	Salt Application, and Naturally
OW96-91	Manganese	Occurring Mineralization
OW15-91	Manganese	Naturally Occurring Mineralization
OW21-91	Chloride, Sodium	Salt Application
OW36	Sulphate	Naturally Occurring Mineralization

Salt related impacts are evident along the west side of the property and upgradient of the landfill. No impacts above the RUC are evident due to landfill related activities. On-site, and directly downgradient of the landfill, only minor potential for impacts are apparent.

10.2 Surface Water Quality Results

Table 8 contains the results of the current sampling with a comparison to the Provincial Water Quality Objectives (PWQO). Long-term trend graphs for chloride, total phosphorus, iron, and TSS are included in Appendix E. Historical surface water quality data are included in Appendix E.

Based on the leachate testing and the background water quality, chloride, total phosphorus and iron were selected as leachate indicator parameters. There are PWQO's for total phosphorus and iron.

MARCH 2023

The surface water system is dominated by the central creek on-site (i.e., on-site water course). Topography and stormwater management systems (Basin A and Basin B) are directed to the central creek. To ensure protection of the surface water resources, water quality is measured in the stormwater Basins and the central creek (up-, mid-, and downstream).

10.2.1 Basin A

Surface water collected from the covered area within Phase I (i.e., non-contact stormwater) is directed from the perimeter ditches to channels that enter stormwater Basin A at the south (SP3A-94) and north (SP5A-94). The surface water from the basin is discharged to the on-site watercourse.

Generally speaking, SP5A-94 has been dry or had insufficient water for sampling since 2013 with an exception in November 2021. The Basin outlets to the watercourse via a corrugated steel pipe (CSP). The outlet sampling location (SP4A-94) is at the downstream end of the pipe. No samples were able to be collected at SP4A-94 in the current monitoring period, while SP3A-94 was dry in the fall. The concentrations of the leachate indicator parameters at these locations for the current monitoring period are summarized in Table 8. The time versus trend graphs for all sampling points are included in Appendix E.

Historically, chloride levels were highest at the inlet (SP5A-94) which receives water from the north end of Phase I. The concentrations are generally lowest at the south inlet (SP3A-94) and, as expected, the results for the outlet sample (SP4A-94) indicate a noted reduction.

The water quality at the inlet indicates that the chloride concentration was slightly elevated above the aquatic protection value (APV) with a concentration of 240 mg/L measured at the time of the spring sampling period. Iron was reported as 0.953 mg/L, which exceeds the PWQO of 0.3 mg/L. These analytical results are generally consistent with the pre-2013 typical range. Additional slightly elevated parameters at the Basin inlet sample include phenols and total phosphorous. It is noted that the outlet sample location (i.e., SP4A-94) was dry at the time of the spring and fall sampling events, which suggests that the water sampled at the inlet is not discharging out of the basin (i.e., dry conditions at the basin outlet).

The water quality at the outlet to Basin A typically includes measured chloride concentrations that are below the APV with iron and total phosphorus concentrations fluctuating sporadically above the PWQO. Based on the fluctuating chloride concentrations and consistent with a closed site, the water quality appears to be most influenced by surface sources of impact such as salt and organics, as opposed to landfill leachate. Based on the similarity to water quality within the on-site water course, no impacts to surface water resources are expected due to discharges from Basin A. As reported above, the outlet to Basin A was dry at the time of the spring and fall sampling periods, and therefore, no discharge of the ponded water was occurring at those times.

10.2.2 Basin B

Surface water collected from the covered area and the perimeter of Phase II/III is directed to stormwater Basin B by a corrugated steel pipe (CSP) located beneath the access roadway. Basin B also collects overland flow from agricultural fields to the south via overland flow to the southerly perimeter swale. The inlet sample location (SP1B-94) is located at the discharge of the CSP to Basin B. Like Basin A, Basin B outlets to the watercourse via a CSP. The outlet sampling location (SP2B-94) is at the downstream end of the pipe. Leachate indicator parameters for the current monitoring period are summarized in Table 8.

Chloride concentrations at the inlet (SP1B-94) are typically higher than the outlet (SP2B-94) and occasionally exceed the APV. The outlet from Basin B usually has lower chloride levels and rarely exceeds the APV, indicating a level of attenuation/dilution within Basin B. Both SP1B-94 and SP2B-94 had insufficient water for sampling during the current monitoring period, except for a sample collected from SP1B-94 in May 2022.

MARCH 2023

In May, the inlet sample had several elevated parameters when compared to previous years. Phenols, iron, and total phosphorous exceeded the PWQO, with concentrations of 0.008 mg/L, 8.62 mg/L, and 0.39 mg/L, respectively. Additionally, ammonia, TSS, and nitrate were elevated above historical levels, while chloride and sodium were reduced below typical levels. Total phosphorus typically exceeds the PWQO with a historical average concentration of 0.06 mg/L.

To differentiate the potential sources of chloride, analysis of alkalinity and sodium was previously added to the parameter list for surface water samples. Alkalinity concentrations in Basin B are in the range of 250 to 557 mg/L, and sodium concentrations are in the range of 32.6 to 146 mg/L. Typically, the concentrations reported at the outlet are below those reported at the inlet.

The elevated parameters are considered to be anomalous and will continue to be monitored. Overall, the water quality at Basin B doesn't appear to be influenced by landfill leachate. Exceedances of the PWQO are attributed to salting and/or naturally occurring conditions, including off-site influence from agricultural fields. Consistent with the conditions identified in Basin A, the outlet to Basin B was dry at the time of the spring and fall sampling periods, and therefore, no discharge of the ponded water was occurring at those times.

10.2.3 Sediment Accumulation

The most recent sediment depth measured near the T-bar in Basin B was approximately 80 cm. The Basin outlets should be inspected on a regular basis and the structures cleaned of roots/vegetation. The quality at the Basin A outlet is typically better than the quality from Basin B. This may indicate that the continued development on the final cover and vegetation on Phase II/III should assist to improve the overall surface water quality at the Site.

10.2.4 Onsite Watercourse

Concentrations of leachate indicator parameters for the current monitoring period are summarized in Table 8 and are compared with the historical range in upstream surface water quality below.

Indicator	PWQO	Units	Histo SP1		_	l-10 ream	SP2 Midst	2-93 tream	SP3-93 Downstream		
			Low	High	May	Oct	May	Oct	May	Oct	
Chloride	-	mg/L	13	887	178	384	176		180	339	
Phosphorus	0.03	mg/L	0	0.692	0.06	0.10	0.08	No	0.10	0.12	
Iron	0.3	mg/L	<0.010	127	0.22	1.43	0.48	Sample	0.52	1.69	
TSS	-	mg/L	<2.0	<2.0 500		21	<10		<10	31	

Analytical results from the current sampling period indicate that the water quality is generally within the historical range. Chloride is elevated at all locations in the fall but was noted to be significantly less at all sample locations at the time of the spring sampling program. Iron is elevated above the PWQO at all locations in the spring and fall with the exception of SP1-10 in the spring, while the concentrations are within the historical range for SP2-93 and SP3-93. Total Phosphorous typically exceeds the PWQO at all locations. Aside from the elevated iron, there is no discernible difference between the up-, mid-, and downstream sampling locations. Therefore, no impacts to surface water features are evident due to direct influence or impact from the landfill.

A review of the water quality indicates that the water quality is generally reflective of anthropogenic influence from salt (chloride) and agricultural lands (elevated phosphorous).

MARCH 2023

11. SUMMARY AND CONCLUSIONS

Based on the data presented in this report we conclude the following:

- 1. The St. Mary's Landfill Site encompasses an area of 37 ha. Of this area, 8 ha is approved for landfilling with an approved capacity of 349,050 m³ of waste and daily cover, as stated in the Amended ECA, dated January 10, 2022. As of October 2022, the remaining capacity at the St. Mary's Landfill is estimated to be 6,935 m³. Based on the 2022 fill rate of 7,006 m³/year, the remaining Site life is approximate 1 year.
- 2. The Town's recycling efforts in 2022 diverted 1,255 tonnes of leaf and yard waste, e-waste, and recyclables.
- 3. Observations made during site visits throughout the 2022 operating year indicated that the appearance and operation of the Site was satisfactory.
- 4. The Town did not receive any formal written complaints during the current operating year.
- 5. MHB was previously added to the sampling program in 2016. Based on the analytical results, the water quality appears to be primarily influenced by salt application, as opposed to leachate. The water quality meets the PWQO and is similar to the background surface water quality of the on-site water course. Consequently, discharge from this feature is not expected to cause impact to the on-site water course.
- 6. The historical and ongoing water quality sampling from the outlet of Basin A and Basin B suggests influence from salting and/or surface sources. No impacts to the on-site watercourse are anticipated due to discharge from the Basins.
- 7. There was no evidence of surface water quality impacts to the on-site water course due to landfill activities. The water quality at the up-, mid-, and downstream sample locations had no discernible difference and was within historical values in the spring. A review of the water quality indicates that the water quality is generally reflective of anthropogenic influence from salt (chloride) and agricultural lands (elevated phosphorous).
- 8. The general direction of overburden groundwater flow is predominantly from the west to the east across the subject property and is inferred to generally flow toward the watercourse east of the fill areas. The direction of groundwater flow within the bedrock aquifer is inferred to be predominantly west, consistent with the regional bedrock groundwater flow direction.
- 9. Monitoring wells OW2-84, OW25-91, and OW8A-91 are considered the background wells at the St. Mary's Landfill Site. The overburden background water quality is determined by using the combined average 10-year groundwater quality reported for OW2-84 and OW25-91, while the bedrock background water quality is determined using the average 10-year groundwater quality reported for OW8A-91. Background conditions are described as being relatively highly mineralized with naturally occurring elevated hardness.
- 10. Compliance with the RUC is assessed by evaluating the concentrations of a number of characteristic leachate indicator parameters and leachate impact is not represented by elevated concentrations of individual naturally occurring parameters where these are not accompanied by other elevated indicator parameters.
- 11. The RUC for leachate indicator parameters were not exceeded in the overburden or bedrock groundwater at downgradient monitoring wells. The concentration of hardness is elevated in each of the onsite monitoring wells due to the natural mineralization of the groundwater at the Site and is unrelated to impact or influence from landfill leachate. The elevated hardness concentrations are accompanied by relatively low, stable alkalinity concentrations across the Site.

MARCH 2023

- 12. There is no evidence of off-site impacts to groundwater due to the landfill.
- 13. Private well sampling has commenced since the COVID-19 pandemic and will continue in future monitoring events when access is provided.
- 14. The monitoring well locations with the highest chloride concentrations are located in proximity to the west property boundary adjacent to Perth Road 123. Based on a detailed evaluation of the groundwater chemistry at these locations, the measured increases reported at the locations of OW9B-91, OW15-91. and OW21-91 appear to be directly attributable to road salting and dust suppression and are not related to impact from landfill leachate.

12. RECOMMENDATIONS

Based on the Site inspections, analytical data and information provided by the Town, GMBP provides the following recommendations:

- 1. The groundwater monitoring program should continue on a twice annual basis in the spring and fall as outlined below:
 - Water levels measured in all groundwater wells and MHB,
 - Field measurement of pH, conductivity, and temperature measured in all groundwater wells and MHB,
 - Samples collected for chloride, hardness, phenols, DOC, calcium, alkalinity, nitrate, nitrite, ammonia, sodium and magnesium from all groundwater wells and MHB,
 - OW2-84, OW4-84, OW5-84, OW8B-10, OW9B-91, OW15-91, OW21-91, OW25-91, OW32-96, OW33-96, OW34-96, OW32A-02, OW36, and MHB are sampled additionally for sulphate, boron, iron, manganese, and BTEX (benzene, toluene, ethyl benzene, and xylene).
- 2. Ongoing sampling, analysis, and long-term trend evaluation should be completed for chloride, alkalinity, calcium, and sodium to differentiate the occurrence of chloride from leachate versus chloride from salting.
- 3. Leachate sampling should continue twice per year as outlined in the ECA, if there is sufficient leachate for sampling.
- 4. At the location of OW8A-91, significant fluctuations in the measured water levels (i.e., differences of up to 25 metres in groundwater elevations) have been documented in recent years. If the reason for the questionable water level data at this location cannot be determined and repaired, removal of OW8A-91 from the monitoring network is recommended with consideration to decommissioning of the well to prevent surface water influence on the deeper groundwater.
- 5. The surface water monitoring program should continue on a twice annual basis in the spring and fall including the established analytical parameters, flow monitoring, and measurement of sedimentation in ponds.
- 6. MHB should continue to be monitored and tested for the same parameters as the overburden groundwater wells. If leachate impact is confirmed at MHB, contingency measures should be implemented.

- 7. The owners of the private wells sampled as part of the annual monitoring program should continue to be notified of the results on an annual basis.
- 8. Verification of grades in the active landfill area should be regularly monitored to prevent overfilling.
- 9. The 2023 year-end topographic survey should include the location and volume of waste and daily cover, and location of soil stockpiles imported to the Site.
- 10. Sufficient capacity exists within the current notice to allow waste disposal until September 30, 2022, i.e., for the full term of the Amended ECA. To continue landfilling beyond September 30, 2023, an ECA application must be submitted to the Director by July 31, 2023.
- 11. The Site supervisor should conduct a monthly inspection of the landfill. Key areas are the landfill side slopes, leachate seeps, MHB, and stormwater ponds/culverts/outlets.
- 12. An annual inspection of the leachate sewer line should be conducted and flushing of the line should be scheduled based on the findings on the inspection to ensure that flow is maintained. Consideration could be given to measurement of leachate volumes in the sewer line at the Site boundary to assist in assessing the collection system.

Per:

All of which is respectfully submitted,

GM BLUEPLAN ENGINEERING LIMITED

Per:

Cuirin Cantwell, M.Eng.

Per:

A.W. Bringleson B.E.S., C.E.T.

M.D. Nelson P.Eng., P.Geo.

TABLES

Table 1 - Summary of Monitoring Locations and Well Details

						E	levation (ma	sl)			
Monitoring	Date of		Ground	Top of	Bottom of	Well S	creen	Sand	Pack	Benton	ite Seal
Well	Installation	Screened Stratigraphy	Elevation	Casing	Borehole	Bottom	Тор	Bottom	Тор	Bottom	Тор
		Ŭ . ,		OVER	BURDEN		<u> </u>				
OW6-84	25-Sep-84	Silt / Clayey Silt Till	313.93	314.79	299.15	310.73	311.49	310.73	311.75	311.75	311.95
OW32-96	7-Aug-96	Silt Till	322.54	323.43	310.96	311.11	312.63	310.96	316.44	316.44	321.32
OW21-91	9-Dec-91	Silt and Sand Till / Silt and Clay	319.99	320.76	312.29	312.29	313.82	312.29	314.66	314.66	319.39
MW04-01			332.90	333.55		317.83					
MW04-02			329.41	330.12		317.44					
MW04-03			329.33	330.07		313.51					
OW15-91	21-Oct-91	Sand and Gravel	317.82	318.67	311.62	312.33	313.25	312.33	313.91	313.91	317.22
OW8B-10	25-Oct-10	Clay	314.39	315.35	307.99	307.99	308.9	307.99	309.82	309.82	314.39
OW33-96	8-Aug-96	Till	320.66	321.57	307.1	307.25	308.77	307.1	310.81	310.81	319.46
OW34-96	9-Aug-96	Silt Till	320.77	321.59	311.63	311.78	314.83	311.63	316.35	316.35	319.52
OW25-91	11-Dec-91	Silt some Sand / Gravel	322.86	323.42	312.5	313.11	314.02	312.5	315.85	315.85	322.25
OW1-80	27-May-80	Clayey Silt Till	316.02	316.95	308.42	309.12	309.72	308.42	310.02	310.02	310.22
OW2-80	27-May-80	Clayey Silt Till		315.39							
OW3-80	27-May-80	Clayey Silt Till	315.07	316.2	310.47	310.87	311.47	310.47	312.07	312.07	312.27
OW9B-91	1-Oct-91	Gravel	317.74	318.58	311.19	311.64	312.56	311.19	313.17	313.17	317.14
OW17-91	16-Nov-91	Silt Till / Sand / Silt and Sand	317.39	318.39	307.94	311.6	314.65	311.34	315.05	315.05	316.79
OW36	29-Nov-16	Silty Clayey Sand Till	313.78	314.54	306.85	306.85	309.9	306.85	311.04	311.04	313.48
OW1-84	25-Sep-84	Sandy Clayey Silt Till w Gravel	321.87	322.48	312.27	313.49	314.25	312.27	315.37	315.37	316
DP1	24-Nov-15		310.06	311.18	309.35	309.35	309.65				
DP2	24-Nov-15		309.57	310.73	308.9	308.9	309.2				
OW2-84	25-Sep-84	Sand and Gravel	322.19	322.84	312.59	312.66	313.42	312.59	314.11	314.11	315.09
OW4-84	24-Sep-84	Silty Sand / Clayey Silt	314.52	315.36	300.65	311.47	312.23	311.47	312.69	312.69	313.07
				DEEP O\	/ERBURDEN						
OW5-84	25-Sep-84	Sand with Gravel	313.93	314.42	299.15	299.15	299.91	299.15	302.2	302.2	302.65
OW3-84	24-Sep-84	Sand with Gravel	314.58	315.04	300.71	300.71	301.47	300.71	303.53	303.53	304.22
DP3	24-Nov-15		308.86	310.01	308.18	303.18	308.48				
OW4-80	27-May-80	Clayey Silt Till	315.10	316.13	304.6	305.3	305.9	304.6	306.1	306.1	306.3
				BEI	DROCK						
OW7-91	4-Oct-91	Limestone	314.50	315.27	275.28	275.49	277.01	275.28	280.67	280.67	314
OW8A-91	3-Oct-91	Limestone	314.00	314.86	281.64	281.89	283.42	281.89	287.64	287.64	313.4
OW9A-91	1-Oct-91	Limestone	317.75	318.49	277.36	277.36	278.89	277.36	280.56	280.56	317.2
MW04-04			314.21	314.98		282.64					
OW35			312.95	313.52		270.87					
OW32A-02	17-Sep-02	Limestone	322.09	322.54	278.81	278.81	281.85	278.81	285.51	285.51	322.09

Table 2 - Summary of MECP Water Well Records

MECP No.	Well Location	Easting	Northing	Date Drilled	Static Level (mbgs)	Pumping Rate (L/s)	Use	Notes
7175685	1760 Road 123, Blanshard Twp (PW1)	487094	4787245	23-Aug-11	27.43	1.26	Water Supply	Black Loam - 0.61 mbgs Clay - 28.04 mbgs Limestone - 60.05 mbgs
5002038	1774 Road 123, Blanshard Twp (PW3)	487080	4787463	14-Nov-73	29.26	0.32	Water Supply	Clay - 24.38 mbgs Limestone - 48.77 mbgs
5004319	1736 Road 123, Blanshard Twp (PW4)	487083	4787301	15-Aug-96	34.14	0.51	Water Supply	Clay & Sand - 28.65 mbgs Limestone - 56.39 mbgs
5003434	1764 Road 123, Blanshard Twp (PW5)	487102	4787476	15-Jun-88	40.23	0.44	Water Supply	Black Loam - 0.31 mbgs Clay - 1.22 mbgs Clay & Sand - 28.35 mbgs Limestone - 56.39 mbgs
5003388	Lot 17 SB, Perth County	487214	4786993	26-Oct-87	42.98	0.44	Water Supply	Black Loam - 0.31 mbgs Clay & Sand - 36.27 mbgs Limestone - 52.12 mbgs
5001196	St. Mary's Landfill	487313.7	4787318	12-Aug-47	9.75	0.63	Water Supply	Clay & Stones - 7.32 mbgs Limestone - 32.31 mbgs
5006163	St. Mary's Landfill	487299	4787043	11-Sep-06	-	-	-	Abandonment Record
7155445	1221 Water Street S, St. Mary's	487578	4787041	25-Oct-10	-	-	Observation	Gravel & Sand - 1.22 mbgs Clay - 6.4 mbgs
7274050	Water St, Blanshard Twp	487143	4787039	18-Oct-16	38.1	0.63	Water Supply	Black Loam - 0.61 mbgs Clay & Stones - 6.40 mbgs Hardpan - 31.09 mbgs Limestone - 60.05 mbgs

Table 3 - Groundwater Elevations

Elevations	OW1-80	OW2-80	OW3-80	OW4-80	OW1-84	OW2-84	OW3-84	OW4-84	OW5-84	OW6-84	OW7-91	OW8A-91	OW8B-91	OW8B-10	OW9A-91	OW9B-91	OW15-91	OW17-91	OW21-91	OW25-91	OW32-96	OW32A-02	OW33-96	OW34-96	OW35	OW36
Measuring Point	316.95	315.39	316.10	316.15	322.54	322.86	314.87	314.89	314.42	314.79	315.27	315.19	314.90	315.35	318.49	318.58	318.67	318.39	320.76	323.35	323.48	322.63	321.57	321.64	313.52	314.54
Ground	316.02	-	315.07	315.10	321.87	322.25	242.04	242.04	242.07	313.97	313.94	314.00	242.70	314.39	240.00	240.22	240.24	247.20	319.99	222.04	202.00	322.07	220.00	220 77	312.95	313.78
Surface Screen Top	309.72	NA	311.47	305.90	314.25	313.42	313.91 301.47	313.91 312.23	313.97 299.91	311.49	277.01	283.42	313.72	308.90	318.26 278.89	318.33 312.56	318.34 313.25	317.39	313.82	322.81 314.02	322.62 312.63	281.85	320.66 308.77	320.77 314.83	312.95	309.90
Screen Bottom	309.12	NA.	310.87	305.30	313.49	312.66	300.71	311.47	299.15	310.73	275.49	281.89		307.99	277.36	311.64	312.33	311.59	312.29	313.11	311.11	278.81	307.25	311.78	270.87	306.85
Groundwater Ele					010.10	012.00	000.7 1	011111	200.10	010.70	210.10	201.00		007.00	217.00	011.01	012.00	011.00	O I E I E O	010.11	011111	270.01	007.20	0110	2, 0.01	000.00
3-Oct-84			313.72	306.05	317.20	318.17	Dry	312.81	301.55	Dry																
18-Oct-84			313.64	305.81	317.15	317.96	Dry	312.83	301.36	Dry																
29-Oct-84			313.63	305.82	317.17	317.91	Dry	312.80	301.31	Dry																
31-Oct-84			312.78	305.57	317.07	317.86	Dry	312.77	301.22	Dry																1
4-Feb-85			313.67	305.64	317.29	318.48	Dry	312.85	301.24	Dry																
8-May-85			313.83	306.07	316.19	318.45	Dry	312.46	301.42	Dry																
14-Aug-85			312.59	306.03	316.55	317.17	Dry	312.06	301.33	Dry																
18-Feb-86	311.35		313.85	306.61	317.52	318.52	Dry	312.80	301.58	Dry																
8-May-86	311.41		313.91	314.54	317.48	318.62	Dry	212.12	301.39	Dry																
12-Aug-86 3-Nov-86	311.48 311.73		312.73 313.84	312.19 314.28	316.89 317.67	317.54 318.76	Dry Dry	312.18 312.84	301.24 301.41	Dry																
10-Feb-87	311.73		313.84	314.28	317.67	318.76	Dry	312.84	301.41	Dry Dry																
12-May-87	311.76		313.86	314.14	317.43	318.42	Dry	312.87	301.70	Dry																
13-Aug-87	311.01		311.91	311.59	316.27	317.09	Dry	311.71	301.40	Dry																
3-Nov-87	310.03		311.01	310.47	316.16	316.66	Dry	312.83	301.27	Dry																
28-Jan-88	310.27		313.07	313.52	316.98	317.81	Dry	312.76	301.15	Dry																
24-May-88	311.05		314.13	314.52	317.39	318.18	Dry	313.04	301.38	Dry																
18-Aug-88			311.73	309.91	316.40	317.50	Dry	312.53	301.34	Dry																
8-Nov-88	310.35		314.17	311.89	317.09	318.12	Dry	313.09	301.35	Dry																
2-Feb-89			314.97	311.69	317.39	318.51		313.10	301.35																	í
9-May-89	311.01	Dry	315.01	312.64	317.43	317.85	Dry	312.79	301.41	Dry																
28-Aug-89	311.05	Dry	312.36	310.76	316.43	317.46	Dry	312.14	301.34	Dry																
30-Nov-89	311.33	Dry	314.44	311.80	317.46	317.26	Dry	312.88	301.38	Dry																
22-Feb-90	311.03	Dry	315.05	312.45	317.46	318.58	Dry	312.88	301.38																	
28-May-90	311.69	Dry	315.15	312.42	317.47	318.65	Dry	313.01	301.27	-																
14-Aug-90 5-Nov-90	312.36	Dry Drv	315.00 315.29	312.54 312.20	317.39 317.76	318.60	Dry Dry	312.94	301.53	Dry																
5-Nov-90 4-Feb-91	311.29	Dry	315.29	312.20	317.76	319.08 318.66	Dry	312.97 312.88	301.78 301.69	Dry Dry																
14-May-91	311.81	308.98	315.09	311.61	317.49	318.75	Dry	313.02	301.88	Dry																
26-Aug-91	311.94	309.20	313.43	310.71	316.79	317.80	Dry	312.69	301.62	Dry																
21-Sep-91	311.11	309.28	312.18	309.66		011.00	=-,	312.83	301.65	,	286.15	286.41	Dry		285.62	314.10										
26-Sep-91	311.03	309.27	312.20	309.66	316.30	317.19		312.86	301.61		285.99	286.22	Dry		285.54	314.13	314.13									
11-Nov-91	310.95	309.28	313.07	309.79	316.26	317.26	Dry	312.44	301.55	Dry	285.78	286.06	Dry		285.33	314.13	314.13									
22-Nov-91										-			,		285.42	314.25	314.26									
3-Dec-91			314.57	310.53	316.61	317.47	Dry	312.87	301.83		286.27	286.47	Dry		285.66	314.36	314.37									
12-Dec-91	310.08	309.21	314.91	310.18	316.82	317.65	Dry	313.04	301.61		286.79	287.04			285.88	314.38	314.38		317.53							
13-Dec-91							Dry								285.99	314.35				314.35						
14-Dec-91							Dry								286.11	314.45	314.44		316.26	314.41						
26-Dec-91	310.40	309.17	315.00	311.16	316.98	317.91	Dry	313.06	301.63		287.53	287.78			286.31	314.42	314.42		316.60	314.37						
23-Jan-92	310.99	309.17	315.10	311.27	317.56	318.35		313.09	301.88		288.30	288.67			286.97	314.61	314.61		316.26	314.54						
3-Feb-92	311.19	309.09	315.10	311.35	317.71	318.46		312.89	301.67		288.37	288.76			285.95	314.49	314.48		040.55	314.47						
7-Feb-92 13-Mar-92	311.53	309.09	315.12 315.00	311.35	317.81 319.59	318.53		312.93	301.63		288.46 289.43	288.73	D-:		287.07 287.74	314.53	314.51		316.57	314.46						
25-May-92	311.53	309.09	314.93	311.35	319.59	318.96 318.54		312.98 312.93	301.82 301.80		289.43	289.68 288.61	Dry Dry		286.95	314.59 314.45	314.53 313.84		316.68 315.08	314.53 314.39						
6-Aug-92	312.10	309.01	314.96	311.37	319.88	318.65		312.93	301.80		287.01	287.35	Dry		286.41	314.45	314.43		315.08	314.40						
2-Nov-92	312.70	309.94	315.13	311.75	319.36	319.01		313.00	301.73		288.90	289.38	Dry		287.56	314.70	314.61		316.11	314.72						
6-Feb-93	312.54	310.10	315.20	311.65	319.50	318.84		312.92	301.98		289.98	290.58	Dry		288.52	314.48	314.51		316.12	314.72						
25-May-93			314.97	311.52	319.80	318.63		Dry	301.99		288.10	288.55	Dry		287.61	314.53	314.43		316.49	314.41						
23-Aug-93			313.64	311.32	319.26	317.90		Dry	301.60		286.30	286.67	Dry		286.22	313.97	313.95		316.12	314.02						
13-Apr-94			315.14	311.75	317.78	318.92	Dry	313.10	302.14	310.89	289.17	289.75	307.84		288.08	315.04	315.04		316.50	315.10						

Table 3 - Groundwater Elevations

Elevations	OW1-80	OW2-80	OW3-80	OW4-80	OW1-84	OW2-84	OW3-84	OW4-84	OW5-84	OW6-84	OW7-91	OW8A-91	OW8B-91	OW8B-10	OW9A-91	OW9B-91	OW15-91	OW17-91	OW21-91	OW25-91	OW32-96	OW32A-02	OW33-96	OW34-96	OW35	OW36
Measuring Point	316.95	315.39	316.10	316.15	322.54	322.86	314.87	314.89	314.42	314.79	315.27	315.19	314.90	315.35	318.49	318.58	318.67	318.39	320.76	323.35	323.48	322.63	321.57	321.64	313.52	314.54
Ground	316.02		315.07	315.10	321.87																					
Surface						322.25	313.91	313.91	313.97	313.97	313.94	314.00	313.72	314.39	318.26	318.33	318.34	317.39	319.99	322.81	322.62	322.07	320.66	320.77	312.95	313.78
Screen Top	309.72	NA	311.47	305.90	314.25	313.42	301.47	312.23	299.91	311.49	277.01	283.42		308.90	278.89	312.56	313.25	-	313.82	314.02	312.63	281.85	308.77	314.83		309.90
Screen Bottom	309.12	NA	310.87	305.30	313.49	312.66	300.71	311.47	299.15	310.73	275.49	281.89		307.99	277.36	311.64	312.33	311.59	312.29	313.11	311.11	278.81	307.25	311.78	270.87	306.85
Groundwater Ele	evation (me	etres abov		a level)	317.00	040.00	D=-	D	004.00	D=-	005.74	000.44	000.00		005.00	04470	044.00		044.50	04477		1	1			
7-Sep-94 28-Apr-95			313.49 315.04	310.41 307.07	317.00	318.26 319.10	Dry Dry	Dry 313.11	301.92 301.98	Dry Dry	285.74 288.00	286.14 288.39	308.00		285.80 286.99	314.70	314.69 315.17		314.58 313.23	314.77						
14-Sep-95			312.15	307.07	316.86	317.84	Dry	Dry	301.98	Dry	285.21	285.47	308.08		285.10	315.21 314.54	315.17		313.23	315.77 314.59						
2-Apr-96			315.02	311.74	317.34	318.62	Dry	312.30	301.86	Dry	288.43	289.07	308.28		287.18	314.97	314.91		316.59	315.19						\vdash
5-Sep-96			0.0.02	011111	011.01	318.04	Dry	Drv	301.56	Dry	285.97	286.40	308.07		285.75	314.63	314.64		316.06	314.75	316.77		309.12	316.23		
9-Apr-97						318.87	Dry	313.14	302.07	Dry	289.09	289.72	308.36		287.68	315.12	315.07		316.93	315.40	314.53		309.26	317.52		
15-Sep-97						318.01	Dry	Drv	301.90	Dry	285.56	285.97	308.32		285.53	313.69	313.56		315,40	314.32	316.70		309.04	316.04		
7-Apr-98						318.86	Dry	312.08	302.17	Dry	285.56	288.58	308.24		286.87	315.23	315.17		315.36	318.19	317.34		309.32	317.59		
8-Sep-98						317.26	Dry	Dry	301.92	Dry	284.57	284.92	308.25		284.69	314.62	314.58		314.85	315.98	315.56		308.81	315.07		
21-Apr-99						318.37	Dry	Dry	301.94	Dry	286.43	286.93	308.16		285.62	315.37	315.34		316.24	317.63	317.02		309.16	317.39		
1-Sep-99						317.35	Dry	Dry	301.85	Dry	284.74	285.07	308.16		284.56	315.02	314.91		315.19	315.92	315.75		308.81	314.99		
19-Apr-00						318.51	Dry	Dry	302.12	Dry	285.83	286.19	307.89		285.19	315.41	315.27	315.38	316.02	317.84	317.23		309.27	317.56		
6-Sep-00						318.58	Dry	Dry	302.14	Dry	286.18	286.61	308.21		285.64	315.33	315.27	315.32	316.10	317.36	317.29		309.21	317.12		
11-Apr-01						318.75	Dry	312.31	302.07	Dry	288.34	288.92	308.56		287.04	315.57	315.44	315.46	316.22	318.37	317.42		309.42	317.64		igsquare
18-Sep-01						317.34	Dry	Dry	301.97	Dry	285.53	285.87	308.42		285.02	314.77	314.70	314.75	315.07	316.07	315.83		308.85	315.06		
2-Apr-02						318.68	Dry	312.35	302.24	Dry	287.13	287.72	308.35		286.08	315.41	315.36	315.39	316.32	318.11	317.41		309.40	317.63		igsquare
24-Sep-02						317.60	Dry	Dry	301.98	Dry	285.83	286.23	308.39		285.09	314.86	314.82	314.83	315.56	316.20	315.97		308.93	315.32		
16-Apr-03 10-Sep-03						318.74 317.52	Dry Dry	312.26	301.87 301.96	Dry Dry	287.25 285.66	287.71 286.11	308.28 308.31		286.12 285.10	315.40 315.03	315.36 314.97	315.36	316.61	318.21 316.27	317.27 316.09	285.65 284.57	309.27 308.94	317.65		
12-May-04						317.52	Dry	Dry 312.57	301.86	Dry	287.95	288.57	308.31		286.78	315.03	314.97	314.99 315.38	315.23 317.16	318.43	317.44	286.22	309.38	315.26 317.69		
1-Sep-04						317.84	Dry	Dry	301.78	Dry	285.59	286.14	308.13		285.33	315.45	315.37	315.26	315.53	316.49	316.51	284.75	309.03	317.89		
6-Apr-05						318.74	Dry	312.60	301.92	Dry	286.71	287.06	308.05		285.76	315.38	315.31	315.37	317.43	318.28	317.31	285.29	309.28	317.66		
23-Nov-05						318.02	Dry	Dry	302.22	Dry	284.24	284.80	308.20		284.13	315.35	315.28	315.66	316.85	317.20	316.87	283.70	309.09	315.50		
19-Apr-06						318.76	Dry	312.28	301.96	Dry	287.39	287.95	308.20		286.27	315.38	315.25	315.57	317.61	318.04	317.43	285.77	309.34	317.63		
22-Nov-06						318.98	Dry	312.28	301.87	Dry	286.86	287.27	308.40		285.88	315.40	315.36	Decom	318.08	318.15	317.57	285.39	309.25	317.66		
18-Apr-07						318.78	Dry	312.34	302.20	Dry	287.49	288.25	308.21		286.58	315.38	315.32		317.68	317.97	317.45	285.96	309.46	317.64		
30-Nov-07						317.19	Dry	311.47	301.73	Dry	284.42	284.88	308.38		284.29	315.12	315.04		318.24	316.18	315.65	283.85	308.62	314.46		
9-Apr-08						319.08	Dry	312.31	302.02	Dry	288.43	289.05	308.21		287.08	315.43	315.35		318.22	318.42	317.31	286.54	309.35	317.74		
26-Nov-08						318.77	Dry	313.23	301.94	Dry	286.31	287.25	308.50		285.53	315.35	315.27		319.06	318.14	317.39	285.09	309.37	317.31		
27-Apr-09						318.64	Dry	313.12	302.12	Dry	288.35	289.26	313.80		287.22	315.35	315.29		318.91	318.28	317.34	286.63	309.40	317.58		
29-Nov-09						318.21	Dry	Dry	301.92	Dry	285.61	286.94	313.59		285.60	315.28	315.19		317.97	317.00	317.12	285.10	309.08	316.26		
25-Mar-10						318.66	Dry	311.97	302.18	Dry	286.76	287.53	313.77		285.91	315.36	315.28		318.30	317.80	317.29	285.34	309.37	317.57		igsquare
23-Nov-10						318.42	Dry	312.88	302.12	Dry	285.58	286.18		_	285.38	315.35	315.27		318.99	317.25	317.26	284.74	309.28	316.54		
31-Mar-11						318.90	Dry	Dry	302.33	Dry	287.59	288.43		Dry	286.77	315.41	315.32		318.55	318.00	317.48	286.12	309.44	317.72		
2-Dec-11						319.13	Dry	313.07	302.15	Dry	286.81	287.44		308.33	286.08	315.37	315.27		319.16	318.44	317.57	285.38	309.30	317.77		
26-Apr-12 21-Nov-12						318.39 317.86	Dry Dry	Dry Dry	302.52 301.91	Dry Dry	286.48 285.65	287.30 286.14		308.56 308.71	286.04 286.11	315.38 315.33	315.27 315.25		317.81 317.96	317.54 316.93	317.27 316.41	285.32 284.51	309.53 308.80	317.30 315.47		
1-May-13						317.86	Dry	312.27	302.23	Dry	287.90	288.85		308.83	286.76	315.36	315.25		317.96	318.08	317.37	284.51 NA	309.34	317.68		
28-Oct-13						318.91	Dry	313.16	302.23	Dry	286.61	287.19		309.04	285.77	315.32	315.24		318.88	318.28	317.41	285.22	309.23	317.66		
25-Jun-14						318.34	Dry	Drv	302.45	Dry	286.53	287.38		309.26	285.84	315.34	315.27		316.73	317.14	317.10	285.16	309.46	317.10		
5-Nov-14						318.64	Dry	Dry	302.23	Dry	285.70	286.35		309.15	285.27	315.37	315.29		317.21	317.50	317.39	284.48	309.27	317.00		
27-May-15						318.32	Dry	Dry	302.48	Dry	286.24	286.92		309.18	285.64	315.36	315.28		316.81	317.19	317.15	284.95	309.45	317.23		
29-Sep-15						318.01	Dry	Dry	302.25	Dry	285.26	285.85		308.82	285.03	315.36	315.28		316.58	316.67	316.88	284.32	309.23	315.82		
14-Dec-15						318.46	Dry	Dry	302.40	Dry	285.35	285.92		308.68	285.08	315.46	315.39		317.09	317.37	317.30	284.39	309.40	316.66		
8-Mar-16						318.81	Dry	313.29	302.40	Dry	286.61	287.24		308.82	285.87	315.38	315.30		317.73	317.97	317.45	285.18	309.39	317.67	286.67	
29-Mar-16						318.84	Dry	313.45	302.35	Dry	286.75	287.33		309.06	285.91	315.28	315.20		317.92	318.31	317.44	285.29	309.29	317.71	287.07	
27-Apr-16						318.77	Dry	311.97	302.53	Dry	287.47	288.33		309.16	286.50	315.35	315.18		317.31	317.82	317.47	285.77	309.48	317.63	NA	
31-May-16						318.41	Dry	Dry	302.49	Dry	286.40	287.22		308.53	285.79	315.35	315.27		317.27	317.28	317.23	285.05	309.44	317.29	286.08	
29-Jun-16						318.05	Dry	Dry	302.38	Dry	285.89	286.56		308.65	285.41	315.34	315.27		316.43	316.93	316.87	284.69	309.33	316.49	285.57	
27-Jul-16						317.60	Dry	Dry	302.25	Dry	285.52	286.12		308.71	285.18	315.31	315.25		316.04	316.63	316.18	284.46	309.13	315.38	285.22	

Table 3 - Groundwater Elevations

Elevations	OW1-80	OW2-80	OW3-80	OW4-80	OW1-84	OW2-84	OW3-84	OW4-84	OW5-84	OW6-84	OW7-91	OW8A-91	OW8B-91	OW8B-10	OW9A-91	OW9B-91	OW15-91	OW17-91	OW21-91	OW25-91	OW32-96	OW32A-02	OW33-96	OW34-96	OW35	OW36
Measuring Point	316.95	315.39	316.10	316.15	322.54	322.86	314.87	314.89	314.42	314.79	315.27	315.19	314.90	315.35	318.49	318.58	318.67	318.39	320.76	323.35	323.48	322.63	321.57	321.64	313.52	314.54
Ground Surface	316.02		315.07	315.10	321.87	322.25	313.91	313.91	313.97	313.97	313.94	314.00	313.72	314.39	318.26	318.33	318.34	317.39	319.99	322.81	322.62	322.07	320.66	320.77	312.95	313.78
Screen Top	309.72	NA	311.47	305.90	314.25	313.42	301.47	312.23	299.91	311.49	277.01	283.42		308.90	278.89	312.56	313.25	-	313.82	314.02	312.63	281.85	308.77	314.83		309.90
Screen Bottom	309.12	NA	310.87	305.30	313.49	312.66	300.71	311.47	299.15	310.73	275.49	281.89		307.99	277.36	311.64	312.33	311.59	312.29	313.11	311.11	278.81	307.25	311.78	270.87	306.85
Groundwater Ele	evation (me	etres abov	e mean sea	a level)																						
4-Oct-16						317.25	Dry	Dry	302.00	Dry	284.97	285.49		308.83	284.73	315.24	315.16		315.13	316.17	315.61	283.98	308.69	314.49	284.38	
13-Jan-17						318.14	Dry	313.13		Dry				308.71		315.14				318.14	316.67			316.11		(
26-Apr-17						318.75	Dry	312.23	302.41	Dry	287.57	288.36		309.00	286.76	315.38	315.30		317.12	318.04	317.38	286.05	309.50	317.74	287.42	307.05
27-Sep-17						318.02	Dry	Dry	302.17	Dry	286.10	286.75		308.83	285.79	315.36	315.28		316.56	316.64	316.73	284.86	309.13	315.57		307.83
14-May-18						318.61	Dry	Dry	302.63	Dry	287.73	288.67		308.88	287.14	315.29	315.30		316.27	317.70	317.39	285.78	309.48	317.61		308.08
25-Oct-18						318.70	Dry	Dry	301.86	Dry	285.98	286.67		309.38	285.61	315.36	315.19		316.09	317.47	317.23	284.69	309.28	316.39		308.57
27-May-19						318.84	Dry	312.47	302.35	Dry	288.25	313.76		309.26	287.33	315.37	315.27		316.14	318.35	317.47	286.34	309.48	317.68		309.57
22-Oct-19						317.78	Dry	Dry	301.94	Dry	285.95	313.88		309.34	285.84	315.37	315.31		315.99	316.99	316.49	284.88	309.03	315.12		309.68
21-May-20						317.55	Dry	Dry	302.11	Dry	287.17	313.68		309.19	Dry	315.37	315.31		316.01	318.04	317.34	Dry	309.34	317.48		309.91
29-Oct-20						317.76	Dry	Dry	301.90	Dry	285.52	313.33		309.37	278.49	315.44	315.31		315.79	316.73	316.44	284.51	308.94	314.84		309.89
2-Jun-21						317.96	Dry	Dry	301.95	Dry	284.77	296.19		308.23	285.51	315.13	314.97		314.83	NA	316.24	NA	308.41	316.21		308.70
5-Nov-21						320.01	Dry	312.67	301.84	Dry	287.26	313.37		309.24	285.79	316.38	316.32		315.86	318.14	317.56	NA	309.35	317.54		310.57
26-May-22						318.41	Dry	Dry	302.30	Dry	287.25	313.38		308.71	286.65	315.37	315.32		315.58	317.52	317.35	NA	309.48	317.24		309.67
6-Oct-22						317.61	Dry	Dry	301.86	Dry	NA	NA		308.72	NA	315.31	315.26		315.33	316.54	316.29	NA	308.86	315.04		309.70

Notes

NA - Not Available

All elevations measured in meters above mean sea level (m amsl).

Elevations previously reported relative to a local datum. Conversion: geodetic-198.86 m=local datum

Elevations for ground, reference, bottom and groundwater (1980-2012) provided by Conestoga-Rovers & Associates

Observation wells OW1-84, OW2-84, OW3-80, OW4-80, OW3-84, OW4-84, OW5-84, OW6-84 were resurveyed (reference & ground elevation) October 1994.

Observation wells OW25-91 and OW32-96 were resurveyed (reference & ground elevation) November 1999.

Observation wells OW1-80 and OW2-80 were sealed and abandoned in February 1993.

Observation wells OW3-80, OW4-80 and OW1-84 were sealed and abandoned in August 1996.

Observation well OW17-91 was sealed and abandoned in September 2006.

Observation wells OW8A-91 and OW8B-91 were repaired in August and resurveyed in November 2008

Observation well OW8B-91 was abandoned and replaced by OW8B-10 in October 2010 and resurveyed in November of 2010

Table 4 - Leaf and Yard Waste Analytical Results

				Leaf a	nd Yard Was	te Analytical	Results				
Parameter	Units	Category "AA"	RDL				Analytica	l Results			
Parameter	Units	Criteria	KDL	27-May-15	27-Apr-16	26-Apr-17	25-Oct-18	22-Oct-19	29-Oct-20	5-Nov-21	6-Oct-22
Arsenic	mg/kg	13	1	4	8	5	4	6	5	3	4
Cadmium	mg/kg	3	0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	210	2	16	18	16	12	17	20	15	17
Cobalt	mg/kg	34	0.5	4.6	5.2	5	4.2	5.8	6.6	4.3	5.6
Copper	mg/kg	100	1	22	41	28	21	22	24	22.9	38
Lead	mg/kg	150	1	43	61	40	20	28	36	22	56
Mercury	mg/kg	0.8	0.1	<0.10	0.08	NA	<0.10	<0.10	<0.10	0.05	<0.10
Molybdenum	mg/kg	5	0.5	0.8	1.2	1	0.9	1.1	0.7	0.7	1.0
Nickel	mg/kg	62	1	10	12	11	9	12	14	10	12
Selenium	mg/kg	2	0.8	<0.8	<0.8	<0.8	1.5	0.6	<0.8	<0.8	<0.8
Zinc	mg/kg	500	5	113	285	111	75	82	89	87	100

- 1. RDL Reported Detection Limit
- 2. mg/kg milligrams per kilogram
- 3. NA not analyzed
- 4. RDL for Selenium was 0.4 mg/kg in 2018 & 2019 reporting periods

Table 5 - Leachate Indicator Parameters Concentration in Background Wells (2012 to 2022)

	Ba	ckground Concentration	(Cb)	Maximum Concer	ntration (Cr)	
Parameter	Range (20)12 - 2022)	Average Concentration	ODWS	v	Objective Level (Cm)
	OW2-84	OW25-91	Average Concentration	ODWS	Х	
Overburden (mg/L)						
Chloride	4.10 - 9.74	6.51 - 10.90	7.37	250.00	AO	128.69
Hardness	116 - 178	278 - 706	243	100	OG	243
Field Conductivity (μS/cm)	153 - 391	271 - 736	446	-	-	-
DOC	0.6 - 3.5	1.1 - 3.0	1.6	5.0	AO	3.3
Alkalinity	140 - 180	252 - 320	290	500	OG	395
Sulphate	19.9 - 25.7	65.2 - 95.8	42.6	500.0	OG	271.3
Boron	0.100 - 0.121	0.043 - 0.101	0.093	5.000	IMAC	1.320
Iron	<0.010 - 1.220	<0.010 - 1.010	0.403	0.300	AO	0.403
Manganese	0.006 - 0.059	0.016 - 0.051	0.023	0.050	AO	0.037
Sodium	19.9 - 23.6	7.6 - 15.3	18.0	200.0	AO	109.0
Nitrate	<0.05 - 0.54	<0.05 - <0.25	0.27	10.00	MAC	2.70
Nitrate	<0.05 - 0.39	<0.05 - <0.25	0.24	1.00	MAC	0.43
TKN	<0.10 - 0.89	<0.10 - 0.71	0.32	-	-	-

	Background Concentration (Cb)	Maximum Concen	tration (Cr)	
Parameter	Range (2012 - 2022)	Average Concentration	ODWS	х	Objective Level (Cm)
	OW8A-91	Average Concentration	ODWS	*	
Bedrock (mg/L)					
Chloride	2.50 - 51.90	20.01	250.00	AO	135.01
Hardness	270 - 1170	449	100	OG	449
Field Conductivity (μS/cm)	302 - 1063	740	-	-	-
DOC	1.2 - 26.0	6.4	5.0	AO	6.4
Alkalinity	298 - 412	349	500	OG	425
Sodium	21.5 - 33.4	28.0	200.0	AO	114.0
Nitrate	<0.05 - 0.08	0.08	10.00	MAC	2.56
Nitrate	<0.05 - 0.44	0.44	1.00	MAC	0.58

Acceptable concentrations at the site boundary (Cm) are calculated using the following formula:

Cm = Cb + x(Cr-Cb)

NOTES:

- 1. Cr = the Ontario Drinking Water Standards (ODWS), these represent the maximum concentration that should be present in groundwater for domestic consumption.
- 2. Cb = Background concentrations were his-rically calculated using all available data collected from background well GB29.
- 3. Cm = the Reasonable Use Criteria, these represent the maximum concentration acceptable at the site boundary.
- 4. x = 0.5 for non health related parameters (Aesthetic Objective [AO] and Operation Guideline[OG])
 - x = 0.25 for health related parameters ((interim) Maximum Acceptable Concentration [MAC] and [IMAC])
- 5. Cm concentrations shown in **bold** exceed the ODWS, therefore Cm = Cb (background).
- 6. ND = data not detected above the Reportable Detection Limit (RDL); NA = parameter not analyzed.

Table 6 - Summary of Bedrock Groundwater Quality

		Backg	round	Up/Cros	sgradient		Downg	gradient					Off-Site D	omestic			
odws	RUC (Bedrock)								Bedrock								
		OW8	A-91	OW	7-91	OW3	2A-02	OW	9A-91	PW	/1	P\	N3	P\	N4	P	N5
(mg/L)		May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22
		180.0								50.2	59.1	64.9	68.4	75.7	76.2	58.8	72.2
250	135	17.90								4.85	5.02	60.70	64.50	3.91	2.02	24.40	3.90
80-100	449	607								253	297	279	305	370	349	290	350
		0.098	1							0.011	0.002	0.007	0.003	0.018	0.002	0.008	0.001
		38.3								31.1	36.4	28.4	32.7	44.0	38.5	34.8	41.3
5.0	6.4	5.1								1.0	1.0	1.0	0.9	1.6	1.0	1.1	1.8
30-500	425	412								198	189	230	219	225	256	202	193
500			NS	NS	NS	NS	NS	NS	NS								
5.0			1											-	-	-	
0.3																	
0.1																	
200	114	30.1								29.4	30.9	34.1	36.8	34.8	34.4	31.3	32.9
10	2.56	<0.05	1							<0.05	< 0.05	0.11	< 0.05	0.47	< 0.05	< 0.05	< 0.05
1.0	0.58	0.44	1							<0.05	< 0.05	<0.05	<0.05	0.36	< 0.05	< 0.05	< 0.05
		ND	1							ND	ND	ND	ND	ND	ND	ND	ND
•			•	-	•	-	•	•		-	•	•	•	•	•	•	
6.5-8.5		6.78	NS	NS	NS	NS	NS	NS	NS								
		687	1														
	(mg/L) 250 80-100 5.0 30-500 500 5.0 0.3 0.1 200 10 1.0	(mg/L) 250 135 80-100 449 5.0 6.4 30-500 425 500 5.0 0.3 0.1 200 114 10 2.56 1.0 0.58	ODWS RUC (Bedrock) (mg/L) May-22	OWBA-91 (mg/L) May-22 Oct-22 - - 180.0 250 135 17.90 80-100 449 607 - - 0.098 - - 38.3 5.0 6.4 5.1 30-500 425 412 500 - - 0.3 - - 0.1 - - 200 114 30.1 10 2.56 <0.05	ODWS RUC (Bedrock) OWBA-91 OW OWBA-91 OW May-22 Oct-22 May-22 May-22 Oct-22 May-22 May-23 May-24 NS NS NS NS NS NS NS NS	NS	ODWS RUC (Bedrock) OW8A-91 OW7-91 OW3 (mg/L) May-22 Oct-22 May-22 Oct-22 May-22 Oct-22 May-22 180.0 17.90 180.0	ODWS RUC (Bedrock) OW8A-91 OW7-91 OW32A-02	ODWS RUC (Bedrock) OW8A-91 OW7-91 OW32A-02 OW (mg/L)	NS	No	Name	No	Name	ODWS RUC (Bedrock) OW8A-91 OW7-91 OW32A-02 OW9A-91 PW1 PW3 P	DDWS RUC (Bedrock) DW3-91 DW7-91 DW32A-02 DW9A-91 PW1 PW3 PW4	ODWS RUC (Bedrock) OW84-91 OW7-91 OW32A-02 OW94-91 PW1 PW3 PW4 PW4 PW5 OW94-91 PW5

- 1. ODWS = Ontario Drinking Water Standards (June 2003, Revised June 2006)
- 2. AO: Aesthetic Objective; OG = Operational Guideline; MAC = Maximum Acceptable Concentration; ISW: Insufficient Water; IMAC= Interim Maximum Acceptable Concentration
- 3. NV = No value specified, NS = No Sample, NM = Not Monitored
- 4. Values in bold represent results greater than the ODWS
- 5. Shaded values represent results greater than the Reasonable Use Criteria (RUC)
- 7. Results presented in mg/L unless otherwise specified; µS/cm = microsiemens per centimeter; µg/L = microsiemens per litre
- 8. BTEX = benzene, toluene, ethylbenzene and xylene
- 9. ND = BTEX RDL have not been exceeded (benzene= 5.0 µg/L; toluene=24µg/L, ethylbenzene=2.4µg/L, xylene=0.3µg/L)

Table 7 - Summary of Overburden Groundwater Quality

	opws	RUC		Lea	chate			Backg	round							Up/Cross	sgradient					
Parameter	ODWS	(Overburden)	M	H1	M	IH3	OW2	25-91	OW	2-84	OWS	9B-91	OW	15-91	OW2	21-91	OW3	32-96	OW:	33-96	OW3	34-96
	(mg/L)	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22												
Calcium							79.4	78.2	25.2	23.0	81.7	73.0	29.8	36.7	55.7	43.1	42.3	49.6	31.6	38.0	54.2	57.1
Chloride	250	129					9.28	9.13	8.46	7.84	131.00	116.00	32.70	47.10	194.00	206.00	62.90	69.70	42.60	41.00	26.20	22.60
Hardness	80-100	243					323	325	129	117	390	355	190	224	389	292	258	285	176	199	281	295
Phenols							0.108	0.089	0.002	0.001	0.092	0.012	0.018	0.006	0.068	0.028	0.044	0.005	0.075	0.011	0.071	0.052
Magnesium							30.4	31.4	16.1	14.5	45.2	41.9	28.0	32.2	60.6	44.8	36.9	39.1	23.6	25.4	35.3	37.0
DOC	5.0	3.3					1.5	2.0	0.9	1.0	2.4	2.9	1.2	2.6	3.0	2.8	0.8	1.0	1.2	2.1	0.7	0.9
Alkalinity	30-500	395					285	261	168	155	284	277	232	238	257	210	231	218	220	213	231	218
Sulphate	500	271	DRY	DRY	DRY	DRY	65.2	70.1	24.5	22.3	77.7	91.3	33.7	41.2	125.0	158.0	13.5	10.8	19.2	19.2	89.5	87.1
Boron	5.0	1.320					0.067	0.074	0.112	0.101	0.279	0.327	0.423	0.437	0.120	0.102	0.094	0.133	0.174	0.223	0.068	0.098
Iron	0.3	0.403					0.015	0.016	0.012	0.017	0.011	0.02	0.013	0.026	<0.010	0.020	0.018	0.019	<0.010	0.013	0.024	0.017
Manganese	0.05	0.037					0.016	0.040	0.014	0.013	0.046	0.039	0.039	0.053	<0.002	0.004	0.002	0.011	0.004	0.003	0.003	<0.002
Sodium	200	109					11.9	14.0	22.0	19.9	76.4	80.6	44.7	48.6	117.0	90.4	20.3	32.7	40.5	46.0	20.1	24.2
Nitrate	10	2.70					< 0.05	< 0.05	0.20	0.54	< 0.05	< 0.05	0.09	< 0.05	< 0.05	<0.05	1.44	< 0.05	0.12	0.11	0.13	< 0.05
Nitrite	1.0	0.43					< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia							0.03	0.06	< 0.02	< 0.02	0.19	0.13	< 0.02	0.06	< 0.02	<0.02	< 0.02	0.11	0.03	0.10	< 0.02	< 0.02
TKN								0.53		0.23		0.63		0.54		0.32		0.36		0.97		0.2
BTEX							ND	ND	ND	ND	ND	ND	ND									
Field Measurements			-				•				-											
pH (Unitless)	6.5-8.5		DRY	DRY	DRY	DRY	7.10	7.04	7.78	7.86	7.02	5.81	7.40	6.94	7.08	7.55	7.42	7.53	7.46	7.60	7.36	7.72
Conductivity (uS/cm)							675	503	187	177	528	1090	574	567	656	1051	301	358	379	248	563	469

	opws	RUC	Off-Site	Domestic					Downg	radient				
Parameter	ODWS	(Overburden)	P\	W2	OW	4-84	OW	5-84	OW	3B-10	OV	V36	M	НВ
	(mg/L)	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22
Calcium		-					65.7	59.8	75.6	79.9	124	134	92.8	90.7
Chloride	250	129					59.3	46.4	7.77	7.84	22.7	25.0	130	141.0
Hardness	80-100	243					429	365	407	411	617	638	469	455
Phenols		-					0.002	0.005	0.046	0.04	0.029	0.005	0.061	0.009
Magnesium							64.4	52.4	53.0	51.3	74.6	73.7	57.6	55.6
DOC	5.0	3.3					1.1	1.1	1.5	3.3	1.0	1.2	5	5.4
Alkalinity	30-500	395					250	229	253	250	274	270	319	300
Sulphate	500	271	NS	NS	DRY	DRY	189	135	257	276	454	464	126	139.0
Boron	5.0	1.320					0.146	0.147	0.134	0.134	0.173	0.190	0.134	0.131
Iron	0.3	0.403					<0.010	0.015	<0.010	0.022	0.0	0.030	0.013	0.019
Manganese	0.05	0.037					0.034	0.014	0.003	0.01	0.004	0.002	0.077	0.013
Sodium	200	109					40.2	35.7	38.4	38.0	51.0	52.4	56.6	55.2
Nitrate	10	2.70					< 0.05	< 0.05	0.29	0.44	0.29	0.24	< 0.05	< 0.05
Nitrite	1.0	0.43					< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia							0.15	0.2	<0.02	<0.02	<0.02	< 0.02	0.24	0.17
TKN								0.44		0.70		0.11		0.85
BTEX							ND	ND	ND	ND	ND	ND	ND	ND
Field Measurements		_												
pH (Unitless)	6.5-8.5		NS	NS	DRY	DRY	7.06	7.40	6.97	7.33	7.16	7.20	6.92	7.06
Conductivity (uS/cm)							811	692	801	538	887	663	935	570

- 1. ODWS = Ontario Drinking Water Standards (June 2003, Revised June 2006)
- 2. AO: Aesthetic Objective; OG = Operational Guideline; MAC = Maximum Acceptable Concentration; ISW: Insufficient Water; IMAC= Interim Maximum Acceptable Concentration
- 3. NV = No value specified, NS = No Sample, NM = Not Monitored
- 4. Values in bold represent results greater than the ODWS
- 5. Shaded values represent results greater than the Reasonable Use Criteria (RUC)
- 7. Results presented in mg/L unless otherwise specified; μ S/cm = microsiemens per centimeter; μ g/L = microsiemens per litre
- 8. BTEX = benzene, toluene, ethylbenzene and xylene
- $9. \ ND = BTEX \ RDL \ have \ not \ been \ exceeded \ (benzene=5.0 \ \mu g/L); \ toluene=24 \mu g/L, \ ethylbenzene=2.4 \mu g/L, \ xylene=0.3 \mu g/L)$

Table 8 - Summary of Surface Water Quality

							CRE	EEK				PHASE I ST	TORMWATE	R MANAGEN	IENT BASIN		PHASE II.		ATER MANA	GEMENT
Parameter	Units	CWQG	APV	PWQO	Upgra	adient	М	id	Downg	radient	In	let	In	tlet	Οι	ıtlet	In	let	Ou	tlet
					SP.	1-10	SP2	2-93	SP	3-93	SP3	3A-94	SP5	A-94	SP4	A-94	SP1	B-94	SP2	B-94
					May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22	May-22	Oct-22
Calcium	mg/L				46.7	87.8	47.9		46.2	30.5	63.3						143.0			
Chloride	mg/L		180		178	384	176		180	339	240						241			
Hardness	mg/L				183	291	189		180	135	356						596			
Phenols	mg/L	0.004	0.961	0.001	0.010	0.003	0.013		0.009	0.001	0.094						0.008			
Field pH	pН			6.5-8.5	8.16	9.77	7.71		7.29	8.15	7.53]					7.56			
Field Conductivity	μS/cm				998	1602	967		992	961	1658						1616			
Magnesium	mg/L				16.2	17.5	16.9		15.7	14.2	48.0						57.9			
TDS	mg/L				600	1080	626		612	940	894						1050			
BOD₅	mg/L				<2	2	<2		<2	<2	17]					44			
Ammonia	mg/L				0.07	0.13	0.11	NS	0.11	< 0.02	24.6	NS	NA	DRY	NA	DRY	10.5	DRY	DRY	DRY
Field Temperature	0C	5.5-9.5			18.1	16.5	16.4		17.2	16.4	20.7						18.0			
Unionized Ammonia	μg/L	19		20	0.003	0.643	0.002		0.001	0.041	0.343						0.129			
Iron	mg/L	0.300		0.300	0.219	1.430	0.480		0.523	1.690	0.953						8.620			
Manganese	mg/L				0.034	0.09	0.065		0.092	0.153	0.069						0.532			
Turbidity(1)	NTU				4.900	24.40	3.500		3.700	18.800	5.400						67.900			
Total Phosphorus	mg/L	0.020		0.030	0.060	0.10	0.080		0.100	0.120	0.200						0.390			
TSS	mg/L				<10	21.00	<10		<10	31.000	13.000						158.000			
Alkalinity	mg/L				226	211	246		256	212	520						557			
Nitrate as N	mg/L	13			0.810	<0.07	0.480		0.460	0.460	< 0.07						<0.07			
Nitrite as N	mg/L				0.700	<0.05	0.670		0.770	<0.05	<0.05						1.350			
Sodium	mg/L				75.8	126.00	77.4		74.7	115.0	176	1					146			

Notes:

Shaded values exceed the PWQO

Value in italics exceed the APV

Bold values exceed the CWQG

NS = No sample taken due to unsuitable sampling conditions (stagnant/no flow)

NA = No sample taken due to leachate overflow event in May 2022

Table 9 - Vertical Gradients

	Vertica	l Gradients		
Shallow Well	OW8B-10	OW9B-91	OW4-84	OW34-96
Top of Screen	308.90	312.56	312.23	314.83
Bottom of Screen	307.99	311.64	311.47	311.78
Spring Water Level	308.71	315.37	DRY	317.24
Fall Water Level	308.72	315.31	DRY	315.04
Deep Well	OW8A-91	OW9A-91	OW7-91	OW33-96
Top of Screen	283.42	278.89	277.01	308.77
Bottom of Screen	281.89	277.36	275.49	307.25
Spring Water Level	313.38	286.65	287.25	309.48
Fall Water Level	NA	NA	NA	308.86
	Gra	dients		
May-22 Gradients	0.18	-0.85	NA	-1.47
Oct-22 Gradients	NA	NA	NA	-1.17

[&]quot;-" indicates a downward gradient

					MH B His	torical Gro	undwater (Quality Res	ults					
Parameter	Units	RUC	PWQO	RDL										
Parameter	Units	KUC	PWQO	KDL	Sep-17	Oct-18	May-19	Oct-19	May-20	Oct-20	Jun-21	Nov-21	May-22	Oct-22
Chloride	mg/L	129	-	0.1	112	104	120	111	127	126	86.8		130	141
Hardness	mg/L	243	-	0.5	443	435	434	431	438	287	440		469	455
Alkalinity	mg/L	395	-	5	303	259	298	295	300	306	303		319	300
рН	рН	-	6.5-8.5		7.39	7.50	7.16	7.33	7.12	7.43	7.26		6.92	7.06
Phenols	mg/L	-	0.001	0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.003		0.061	0.009
DOC	mg/L	3.3	-	0.5	4.3	4.5	4.7	4.2	4.7	4.8	4.7		5.0	5.4
Boron	mg/L	1.32	0.2	0.01	0.107	0.106	0.124	0.132	0.128	0.15	0.137	NA	0.134	0.131
Iron	mg/L	0.403	0.3	0.01	1.06	<0.01	<0.010	<0.010	0.041	0.045	0.03		0.01	0.02
Manganese	mg/L	0.037	-	0.002	0.092	0.042	0.120	0.046	0.040	0.042	0.082		0.077	0.013
Ammonia (unionized)	mg/L	-	0.02	0.02	0.001	<0.001	0.001	NA	0.001	0.001	0.001		0.002	0.004
Benzene	μg/L	-	100	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2
Ethylbenzene	μg/L	-	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1
Toluene	μg/L	-	-	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2
Xylene	μg/L	=.	-	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2

- 1. RDL Reported Detection Limit
- 2. Highlighted values exceed the RUC
- 3. Red values exceed the PWQO
- 4. NA not analyzed
- 5. Ammonia RDL is for total ammonia. The PWQO and analytical results are for unionized ammonia
- 6. Values for unionized ammonia are calculated based on total ammonia, pH, and temperature

Table 11 - Summary of Duplicate RPD Analysis Results

			Spring	g 202 1			Fall	2021	
Parameter	Units	Sample ID	Sample	Duplicate	Relative % Difference	Sample ID	Sample	Duplicate	Relative % Difference
Inorganics									
Calcium	mg/L	OW2-84	25.2	25.0	0.8	OW5-84	59.8	61	2.0
Chloride	mg/L	OW5-84	59.3	58.5	1.4	OW5-84	46.4	46.4	0.0
Phenols	mg/L	OW2-84	0.002	0.002	NC	-	-	-	-
Magnesium	mg/L	OW2-84	16.1	16.0	0.6	OW5-84	52.4	52.6	0.4
DOC	mg/L	OW8A-91	5.1	5.0	2.0	-	-	-	-
Alkalinity	mg/L	OW9B-91	284	285	0.4	OW34-96	218	218	0.0
Sulphate	mg/L	OW5-84	189	187	1.1	OW5-84	135	135	0.0
Boron	mg/L	MHB	0.134	0.138	2.9	OW5-84	0.147	0.146	0.7
Iron	mg/L	MHB	0.013	<0.010	NA	OW5-84	0.015	0.017	NC
Manganese	mg/L	MHB	0.077	0.066	15.4	OW5-84	0.014	0.017	19.4
Sodium	mg/L	OW2-84	22.0	22.1	0.5	OW5-84	35.7	34.3	4.0
Nitrate	mg/L	OW5-84	<0.05	<0.05	NC	OW5-84	<0.05	<0.05	NC
Nitrite	mg/L	OW5-84	<0.05	<0.05	NC	OW5-84	<0.05	<0.05	NC
Ammonia	mg/L	OW25-91	0.03	0.03	NC	-	-	-	-
TKN	mg/L	-	-	-	-	-	-	-	-

- 1. "-" indicates a parameter that did not have a duplicate analysis conducted.
- 2. NC indicates that the RPD was not calculated. The level of analyte detected in its parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.
- 3. Values in exceedence of the RPD guidelines are displayed in **bold.**

Table 12 - Summary of Leachate Quality

		Leachate Ar	alytical Re	sults			
Davamatav	Linita	Sewer Use		Phase I	- MH1	Phase II/	III - MH3
Parameter	Units	By-Law	RDL	May-22	Oct-22	May-22	Oct-22
Bromodichloromethane	μg/L		0.40				
Bromoform	μg/L		0.20				
Bromomethane	μg/L		0.40				
Carbon Tetrachloride	μg/L		0.40				
Chlorobenzene	μg/L		0.20				
Dibromochloromethane	μg/L		0.20				
Chloroethane	μg/L		0.40				
Chloroform	μg/L	40	0.40				
Chloromethane	μg/L		0.80				
1,2-Dichlorobenzene	μg/L	50	0.20				
1,3-Dichlorobenzene	μg/L		0.20				
1,4-Dichlorobenzene	μg/L	80	0.20				
1,1-Dichloroethane	μg/L		0.60				
1,2-Dichloroethane	μg/L		0.40				
1,1-Dichloroethylene	μg/L		0.60				
Methylene Chloride	μg/L	90	0.60				
trans-1,2-Dichloroethylene	μg/L		0.40	DRY	DRY	DRY	DRY
1,2-Dichloropropane	μg/L		0.40				
cis-1,3-Dichloropropene	μg/L		0.40				
trans-1,3-Dichloropropene	μg/L		0.60				
1,1,2,2-Tetrachloroethane	μg/L	60	0.20				
Tetrachloroethylene	μg/L	60	0.40				
1,1,1-Trichloroethane	μg/L		0.60				
1,1,2-Trichloroethane	μg/L		0.40				
Trichloroethylene	μg/L	50	0.40				
Trichlorofluoromethane	μg/L		0.80				
Vinyl Chloride	μg/L		0.34				
Benzene	μg/L	10	0.40				
m,p-Xylenes	μg/L		0.40				
Ethylbenzene	μg/L	60	0.20				
Toluene	μg/L	20	0.40				
o-Xylene	μg/L		0.20				
Xylenes (Total)	μg/L	300	0.40				

- 1. RDL Reported Detection Limit
- 2. Values in **bold** are above the RDL
- 3. Shaded values are above the Town of St. Mary's Sewer Use By-Law No. 46 of 2014 Appendix E

Table 13 - Summary of Stream Flows

	Upstream				Midstream	Midstream Basin			Downstream	
Location	SP1-10*		SP1B-94 (Inlet)	SP2B-94 (Outlet)	SP2-93	SP3A-94 (South Inlet)	SP5A-94 (North Inlet)	SP4A-94 (Outlet)	SP3-93	
Reference Elevation	311.240	Flow	314.63	(2)	310.190	314.42	314.62	(2)	310.32 (Shallow) 309.38 (Deep)	Flow Measurement (4)
Feb-93	310.01				309.2				308.44	(' '
Sep-94	310.06		312.45	Dry	309.39	Dry	Dry	Dry	308.9	12.7 L/s
Apr-95	310.25		313.56	Flowing	309.64	313.81	313.48	Flowing	309.23	170 L/s
Sep-95	310.06		312.49	Dry	309.33	Dry	Dry	Dry	309.25	28 L/s
Oct-95 3	310.17		NA	Flowing	309.48		313.08	Flowing	309.13	130 L/s
Apr-96	310.19		NA 040.57	Flowing	309.49	Dry	Dry	Flowing	309.04	160 L/s
Sep-96 Oct-96 3	310.08		312.57	Dry	309.32	Dry	Dry	Dry	308.87	9 L/s
Oct-96 3 Apr-97	310.23 310.11		NA 313.37	Flowing Flowing	309.52 309.35	313.54 313.63	313.03 313.02	Flowing Flowing	309.11 308.96	230 L/s 58.6 L/s
Sep-97	309.95		NA	Flowing	309.19	Dry	Dry	Flowing	NA	4.7 L/s
Apr-98 3	310.11		NA NA	Flowing	309.42	313.51	313.06	Flowing	309.06	118 L/s
Apr-98	310.01		312.64	Flowing	309.29	Dry	313.01	Flowing	309.03	220 L/s
Sep-98	309.91		312.1	Flowing	309.22	Dry	Dry	Dry	NA	10 L/s
Apr-99	310.05		312.60	Flowing	309.37	Dry	Flowing	Flowing	309.07	60 L/s
Jun-99 3	310.12		313.33	Flowing	309.41	Dry	Flowing	Flowing	309.06	35 L/s
Sep-99	310.00		313.01	Flowing	309.28	Dry	Dry	Dry	309.01	41 L/s
Apr-00	310.05		313.54	Flowing	309.44	Dry	313.23	Flowing	309.04	146 L/s
Jun-00 3	310.46	1	313.74	Flowing	310.05	313.69	313.54	Flowing	>309.38	4012 L/s
Sep-00	310.03 310.02	 	313.59 313.39	Flowing Flowing	309.44 309.70	313.77 314.03	313.62 313.81	Flowing Flowing	309.01 309.05	98 L/s 89 L/s
Apr-01 Jun-01 3	310.02	 	313.49	Dry	309.70	314.03 Dry	313.81	Dry	309.05	784 L/s
Sep-01	309.92	 	Dry	Dry	309.54	Dry	Dry	Dry	308.99	17 L/s
Apr-02	309.96	1	313.58	Dry	309.61	314.14	313.92	Flowing	Dry	143.62 L/s
Sep-02	309.88		Dry	Dry	309.45	Dry	Dry	Dry	Dry	31.16 L/s
Apr-03	309.93		313.43	Flowing	309.69	Dry	Dry	Dry	309.06	118.52 L/s
Jun-03 3	309.93		313.6	Flowing	309.65	Flowing	Flowing	Flowing	309.06	42.08 L/s
Sep-03	309.82		Dry	Dry	309.50	Dry	Dry	Dry	Dry	28.15 L/s
May-04	309.86		NA		309.81	314.21	NA	Dry	NA	504 L/s
Sep-04	309.78		No Flow	No Flow	309.51	Dry	Dry	Dry	Dry	3.54 L/s
Apr-05 Jul-05 3	309.89		Bent	No Flow	309.73		Too Deep/Low flow	Flowing	309.07	168 L/s
Jul-05 3 Nov-05	309.83 309.83		313.41 313.51	Flowing Flowing	309.66 309.67	Dry Dry	Dry Dry	Flowing Flowing	NA NA	NA 20 L/s
Apr-06	310.05		313.18	Flowing	309.70	Too Deep	Flowing	Flowing	309.03	66 L/s
Jul-06 3	310.62		313.48	Flowing	Too Deep	Too Deep	313.73	Flowing	NA	NA
Nov-06	309.98		313.19	Flowing	309.77	Too Deep/No Flow		Flowing	309.05	51 L/s
Apr-07	310.00		Dry	Flowing	309.78	313.97	Too Deep/Flowing	Flowing	Dry	69.23 L/s
Nov-07	309.77		313.64	Flowing	Dry	Dry	Dry	Dry	Dry	9.01 L/s
Apr-08	309.98		313.70	Flowing	309.77	T-Bar Removed	Dry	NA	Dry	97.01 L/s
Aug-08 Nov-08	309.94		313.76	Flowing	309.74	Dry	Dry	Flowing	Dry	105.0 L/s
Nov-08	310.23		313.74	Flowing	309.97	Flowing	Flowing	Flowing	309.25	398.82 L/s
Apr-09 Nov-09	310.42 NA		313.49 313.20	Flowing	309.85	Dry Dry	Flowing	Flowing	309.15	324.72 L/s 15.41 L/s
Mar-10	309.88		313.79	Flowing Flowing	309.36 309.69	Dry	Dry Flowing	Flowing Flowing	Dry Dry	49.34 L/s
Nov-10	NA		313.84	Flowing	309.78	Dry	Flowing	Flowing	309.255	310.50 L/s
Mar-11	310.39		313.73	Flowing	309.56	Dry	Dry	Flowing	308.88	528.48 L/s
Oct-11	310.08		313.83	Flowing	T-Bar Missing	Dry	Dry	Flowing	309.01	217.41 L/s
Dec-11	310.47		313.84	Flowing	T-Bar Missing	Dry	Dry	Flowing	Dry	639.20 L/s
Apr-12	310.35		313.73	Flowing	Dry	Dry	Dry	Flowing	Dry	48.0 L/s
Aug-12	310.08		313.83	Flowing	T-Bar Missing	Dry	Dry	Flowing	309.01	40.0 L/s
Nov-12	310.47		313.84	Flowing	T-Bar Missing	Dry	Dry	Flowing	Dry	11.12 L/s
May-13 Oct-13	310.83 310.94	 	313.82 313.86	Flowing	309.52 NA	Ponded Ponded	Dry Dry	Flowing	308.95 308.98	(6) 170.57 L/s
Jun-14	310.94	1	Trickle	Flowing Dry	309.43	Dry	Dry	Flowing Dry	308.95	3.13 L/s
Nov-14	310.83	1	313.87	Flowing	309.55	Ins	Dry	Flowing	309.07	13.61 L/s
May-15	310.80		Trickle	Dry	309.52	Ponded	Dry	Dry	308.91	1.49 L/s
Sep-15	310.75		Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Mar-16	310.93	167.27 L/s		•	309.74	•	·		309.05	170.55 L/s
Apr-16	310.82	15.04 L/s		Flowing	309.57	Ponded	Dry	Flowing	308.79	16.47 L/s
May-16	310.81	8.88 L/s			309.50				308.73	10.60 L/s
Jun-16	310.79	1.71 L/s			309.44				Dry	0.64 L/s
Jul-16	310.77	Ins	Desi	D	Dry	D	Desi	D	Dry	Dry
Oct-16 Apr-17	310.80 310.84	Ins 21.0 L/s	Dry 313.89	Dry Flowing	309.45 309.64	Dry Ponded	Dry Ins	Dry Flowing	308.94 309.14	1.84 L/s 28.8 L/s
Sep-17	310.78	1.43 L/s	313.87	Dry	Dry	Dry	Dry	Dry	308.93	Ins
May-18		Low Flow	Low Flow	Low Flow	Low Flow	Ponded	Dry	Flowing		Flowing
Oct-18		Low Flow	Low Flow	Low Flow	Low FLow	Ponded	Dry	Flowing		Flowing
May-19		Standing	Flowing	0.30 m/s	0.31 m/s	Ponded	Dry	0.29 m/s		0.21 m/s
Oct-19	·	0.19 m/s	0.13 m/s	0.12 m/s	0.13 m/s	Dry	Dry	0.16 m/s		0.14 m/s
May-20		0.30 m/s	Flowing	0.14 m/s	0.16 m/s	Stagnant	Dry	0.15 m/s		0.15 m/s
Oct-20		Flowing	Ponded	Dry	Flowing	Dry	Dry	Low Flow		Low Flow
Jun-21		Low Flow	Stagnant	Stagnant	Low Flow	Stagnant	Dry	Low Flow		Low Flow
Nov-21		Low Flow	Ponded Jacobata	Stagnant	Low Flow	Ponded leashets	Low Flow	Dry NA leachata		Low Flow
		I	Ponded - leachate	NA - leachate	Low Flow	Ponded - leachate	NA - leachate	NA - leachate	1	Low Flow
May-22		Low Flow	containment	containment	LOW Flow	containment	containment	containment		LOW FIOW
May-22 Oct-22		Flowing	containment Dry	containment Dry	Stagnant	containment Stagnant	containment Dry	containment Dry		Low Flow

Notes:

Reference elevation refers to top of staff gauge (T-bar) elevation based on most recent survey information of top of staff gauge.

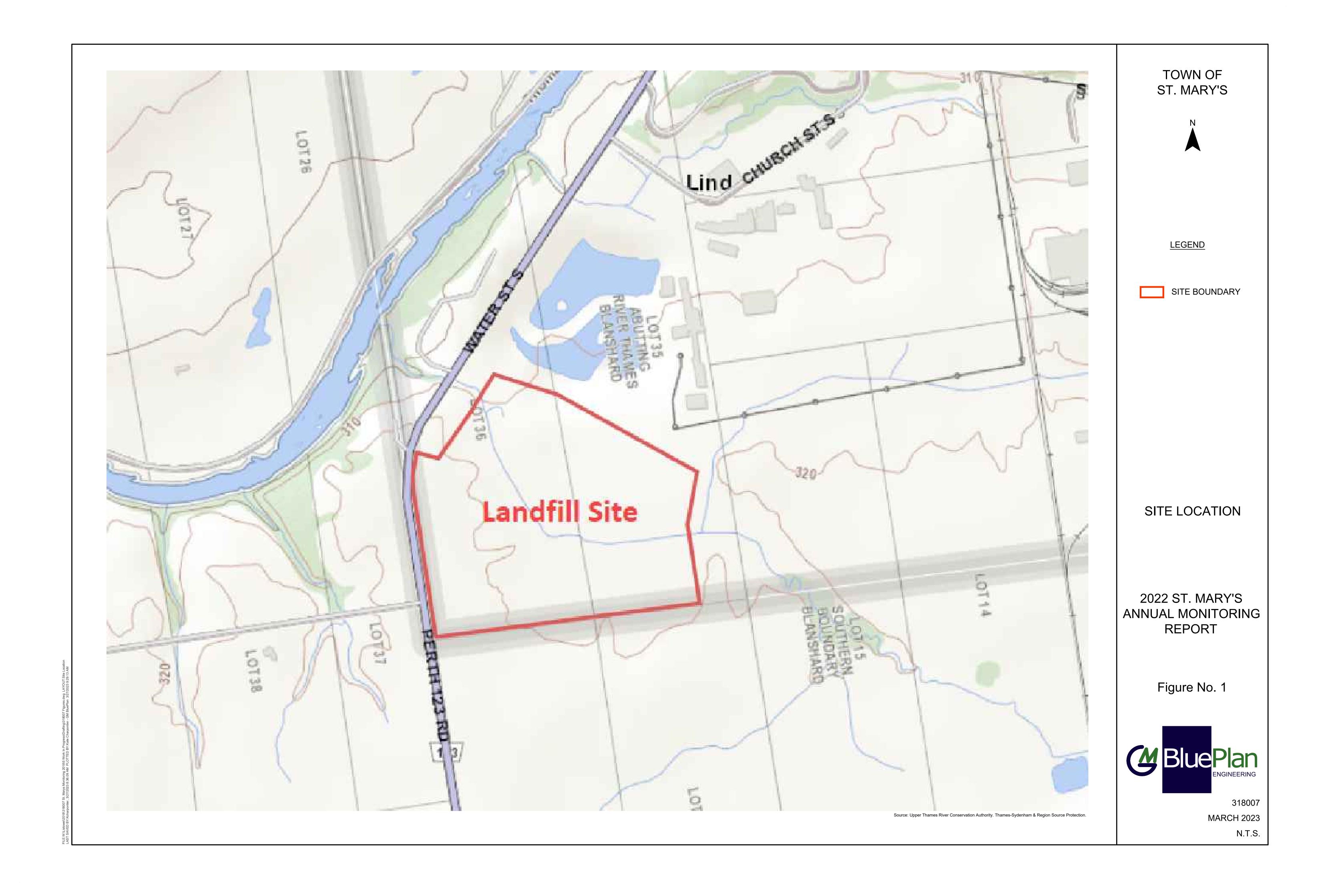
* SP1-10 replaced SP1-93 after the Town took ownership of the Site property in 2009

** Reference elevation - top of culvert - Surveyed October 12, 2006 used for SP1B as of July 2005.

- T-bar removed during reconstruction of Retention Pond.

 Water levels are not recorded. Dry or flowing conditions are noted.

 Water levels recorded after rainfall event.


 Insufficient water to obtain a sample or flow measurement (1) (2) (3) Ins NA

- T-bar not accessible (area flooded, bent or missing T-bar, overgrowth of weeds)

- Rectangular channel cross section assumed T-Bar elevation not consistent with historical information; Resurveyed in 2009
- (4) (5) (6) Dry Flow meter did not work properly Dry at T-bar

TOWN OF ST. MARY'S

<u>LEGEND</u>

Fluvial deposits: gravel, sand, silt and clay; deposited on abandoned flood plains, terrace remnants

Glaciomarine and marine deposits:
sand, gravelly sand and gravel; nearshore
and beach deposits

Glaciomarine and marine deposits: silt and clay; basin and quiet water deposits

Glaciolacustrine deposits: sand, gravelly sand and gravel; nearshore and beach deposits

Glaciolacustrine deposits: silt and clay, minor sand; basin and quiet water deposits

Glaciofluvial outwash deposits: gravel and sand; includes proglacial river and deltaic deposits

Glaciofluvial ice-contact deposits: gravel and sand; minor till; includes esker,

kame, end moraine, ice-marginal delta and

8 Wartburg Till (Huron–Georgian Bay lobe): silty clay matrix, high carbonate content in matrix, clast poor

Stratford Till (Huron–Georgian Bay lobe): sandy silt matrix, strongly calcareous, moderately stony

Mornington Till (Huron–Georgian Bay lobe): silty clay matrix, moderate to high

matrix carbonate content, clast poor.

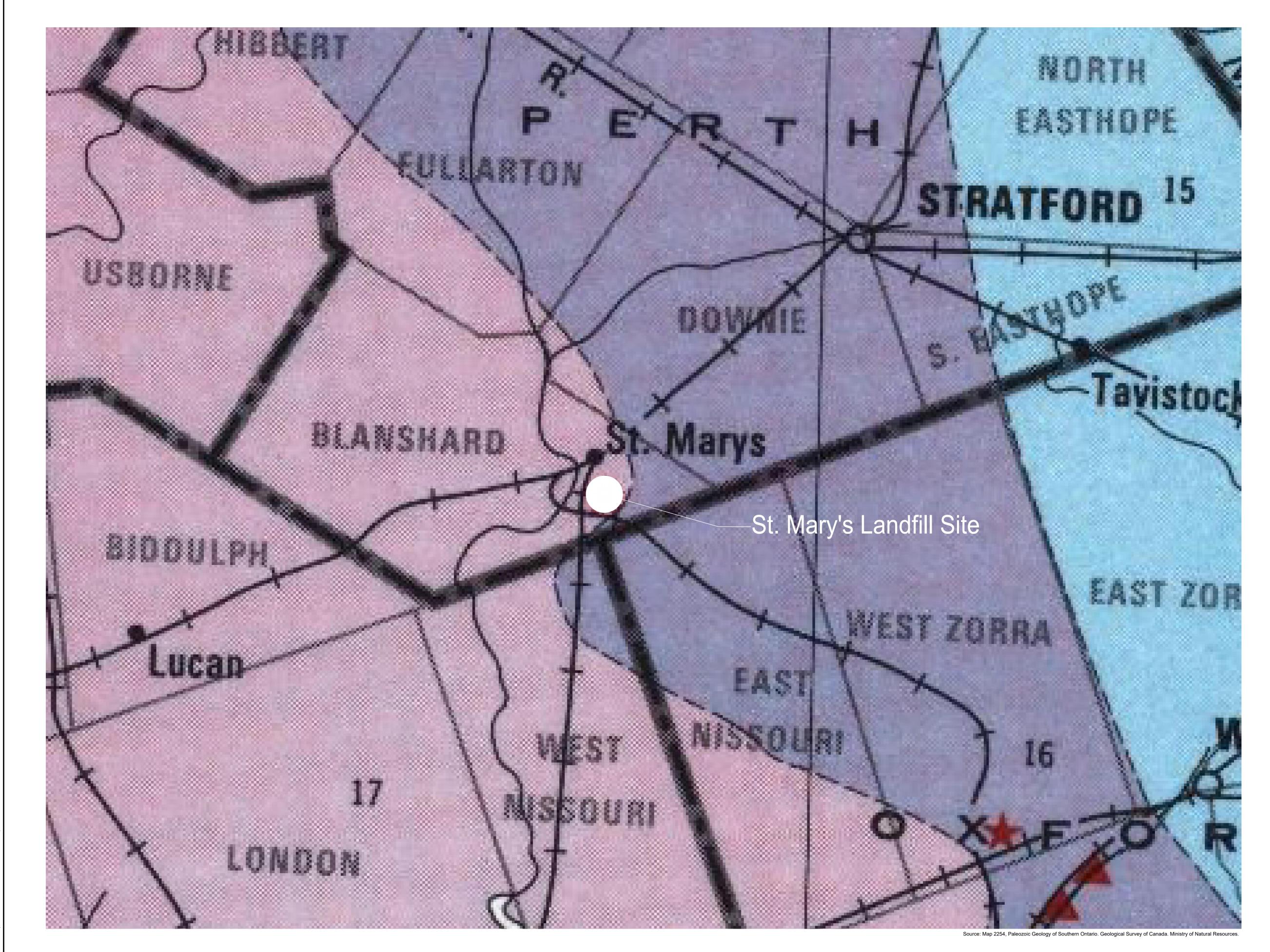
Tavistock Till (Huron–Georgian Bay lobe): sandy silt to silt matrix, silty clay matrix in south and in north, moderate to high carbonate content, clast content decreases from moderate to poor northward

Maryhill Till (Erie lobe): silty clay to clay matrix, moderate to high matrix carbonate content, clast poor

Catfish Creek Till: sandy silt to silt matrix, attrangly salegrouse, moderately stepsy to

SURFICIAL GEOLOGY

2022 ST. MARY'S ANNUAL MONITORING REPORT


Figure No. 3

318007 MARCH 2023

N.T.S.

\istagon St. Marys Monitoring 2018\ist Work In Progress\Drafting\istagon Figures.dwg LAYOUT:Surficial Geology arpontier, 3/27/2023 8:36:09 AM PLOTTED BY:Kate Charpontier - GM BluePlan 3/27/2023 8:29:30 AM

TOWN OF ST. MARY'S

PALEOZOIC DEVONIAN

UPPER DEVONIAN
PORT LAMBTON FORMATION

20 20 Grey shale and sandstone.

<u>LEGEND</u>

KETTLE POINT FORMATION

19 19 Black shale.

HAMILTON: FORMATION

18 Grey shale and limestone.

DUNDEE FORMATION

17 Limestone.

DETROIT RIVER GROUP

16 16 Limestone and dolomite.

BOIS BLANC FORMATION

15 15 Cherty limestone.

BEDROCK GEOLOGY

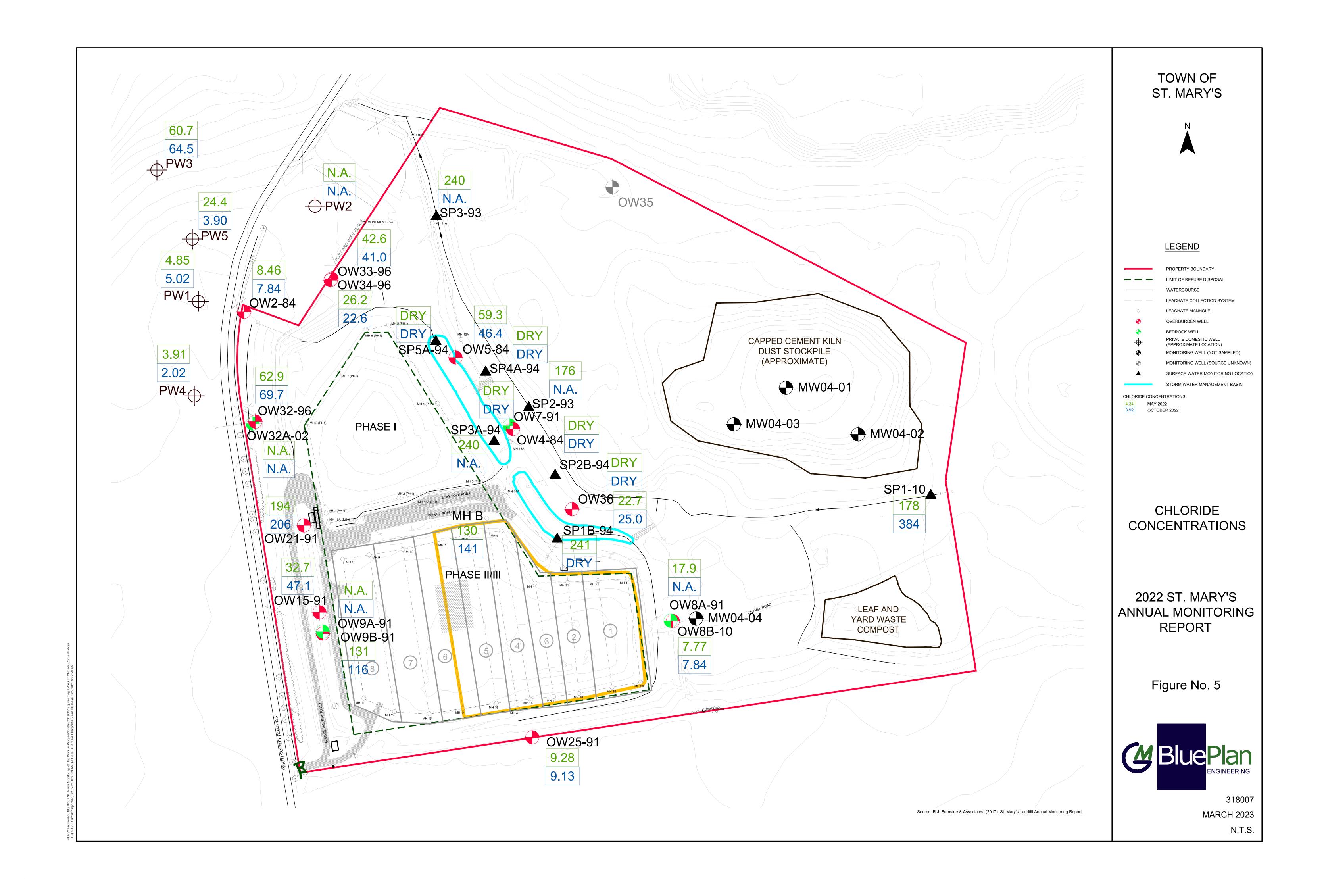

2022 ST. MARY'S ANNUAL MONITORING REPORT

Figure No. 4

318007 MARCH 2023 N.T.S.

Monitoring 2018\tilde{S} Work In Progress\tilde{Drafting\tilde{3}18007\tilde{Figures.dwg LAYOUT:Bedrock Geology 2023 8:38:09 AM PLOTTED BY:Kate Charpontier - GM BluePlan 3\tilde{2}7/2023 9:29:53 AM

TOWN OF

ST. MARY'S

<u>LEGEND</u>

OVERBURDEN WELLS

BEDROCK WELLS

MONITORING WELLS (APRIL 2017 DATA)

WATERCOURSE

CONTOURS

GROUNDWATER FLOW DIRECTION

WATER LEVEL ON MAY 26, 2022

OVERBURDEN

GROUNDWATER

FLOW

2022 ST. MARY'S

REPORT

Figure No. 6

318007

N.T.S.

MARCH 2023

STORMWATER BASINS

TOWN OF ST. MARY'S

<u>LEGEND</u>

OVERBURDEN WELLS

BEDROCK WELLS

MONITORING WELLS (APRIL 2017 DATA)

STORMWATER BASINS

_WATERCOURSE

_____ WATER LEVEL CONTOURS

GROUNDWATER FLOW DIRECTION

WL - WATER LEVEL ON MAY 26, 2022

BEDROCK GROUNDWATER **FLOW**

2022 ST. MARY'S ANNUAL MONITORING REPORT

Figure No. 7

318007 MARCH 2023 N.T.S.

TOWN OF ST. MARY'S

<u>LEGEND</u>

OVERBURDEN WELLS

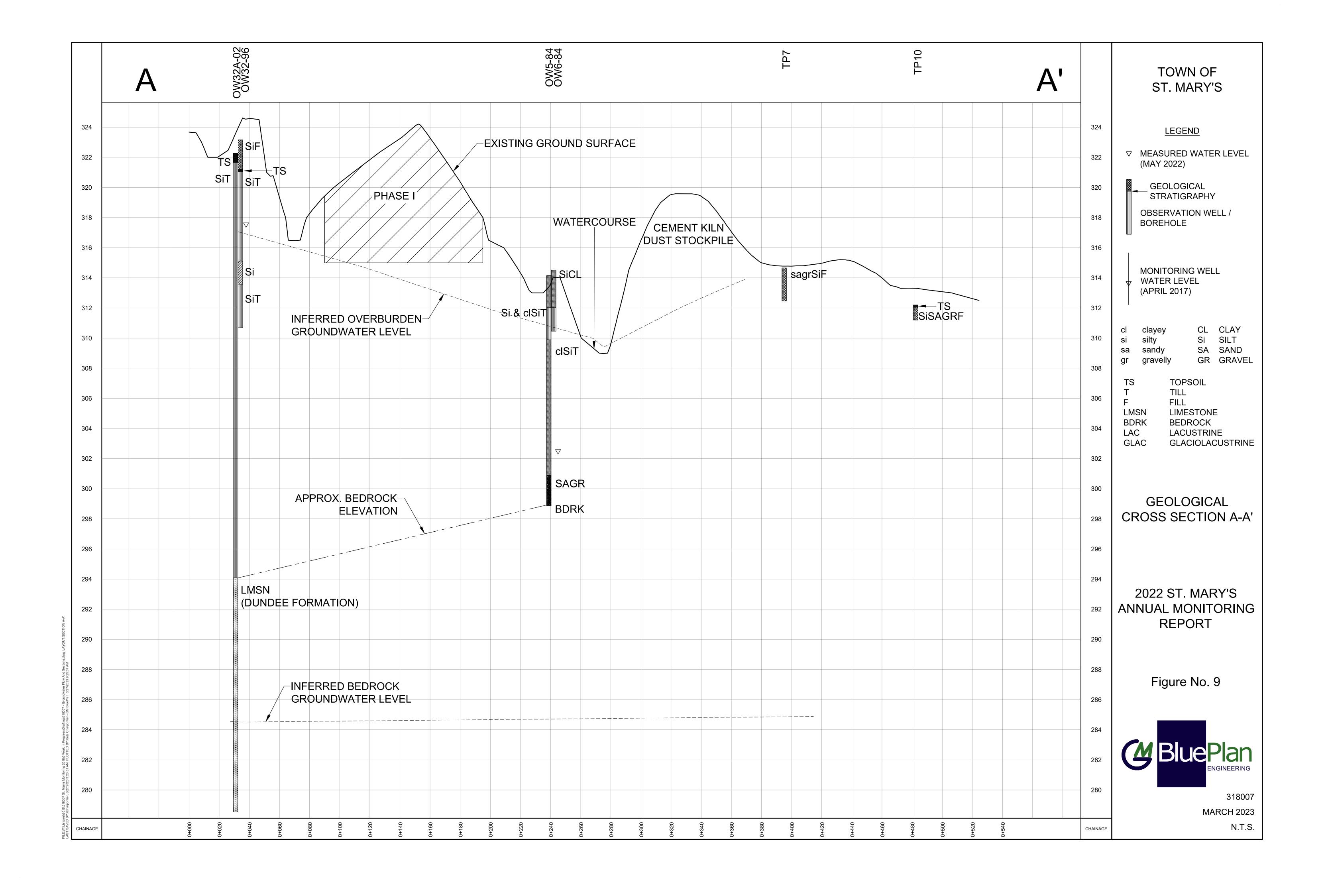
BEDROCK WELLS

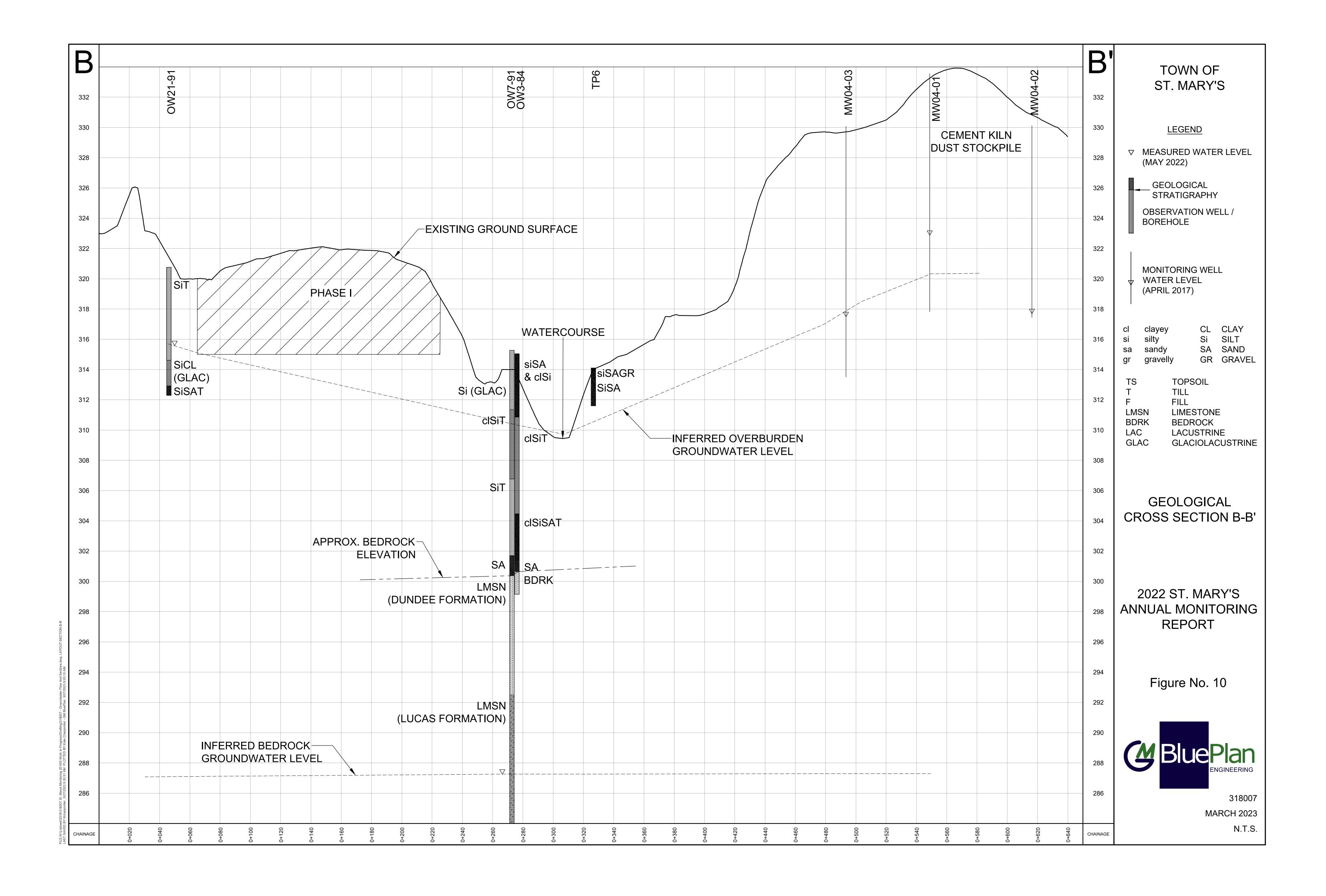
MONITORING WELLS (APRIL 2017 DATA)

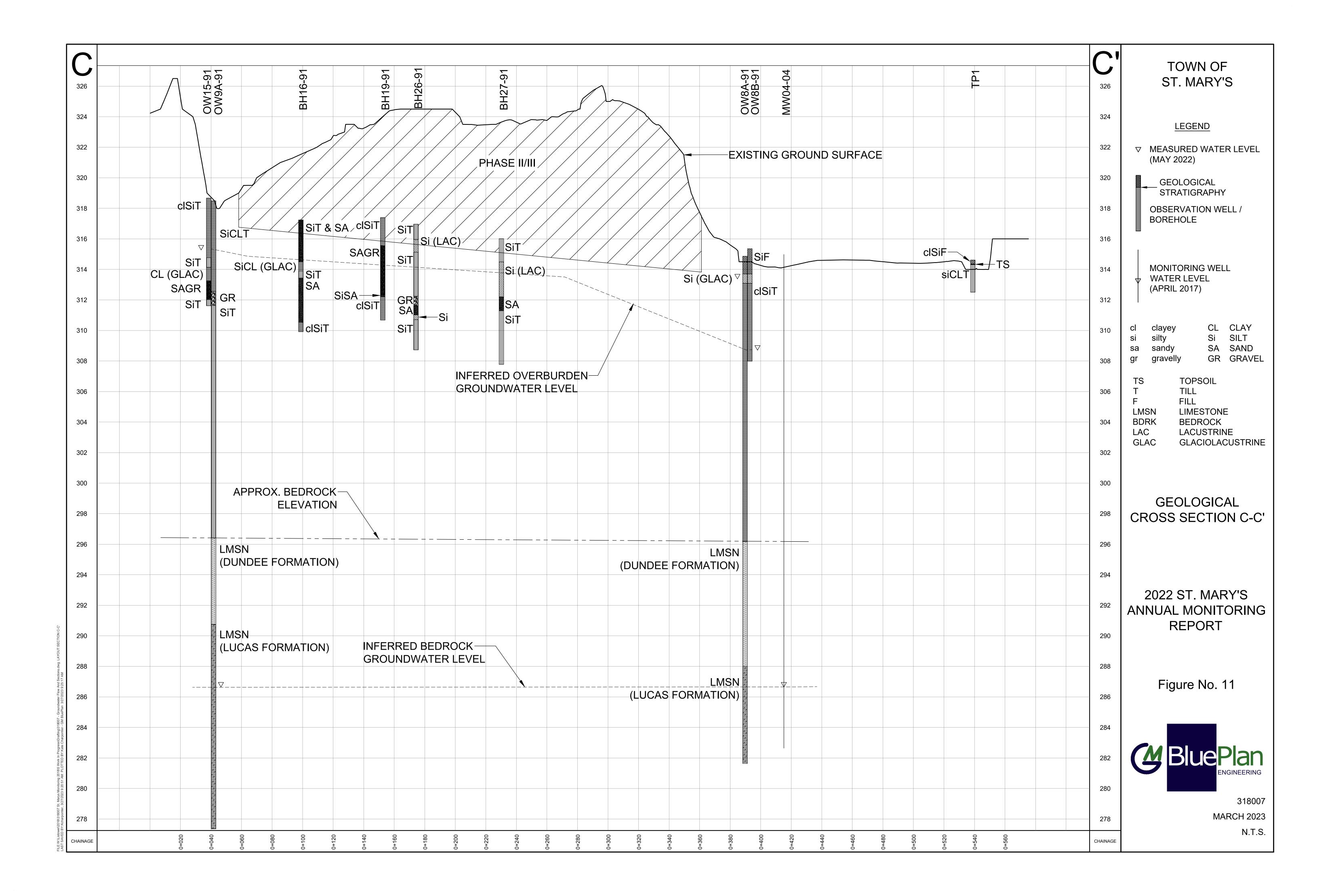
STORMWATER BASINS

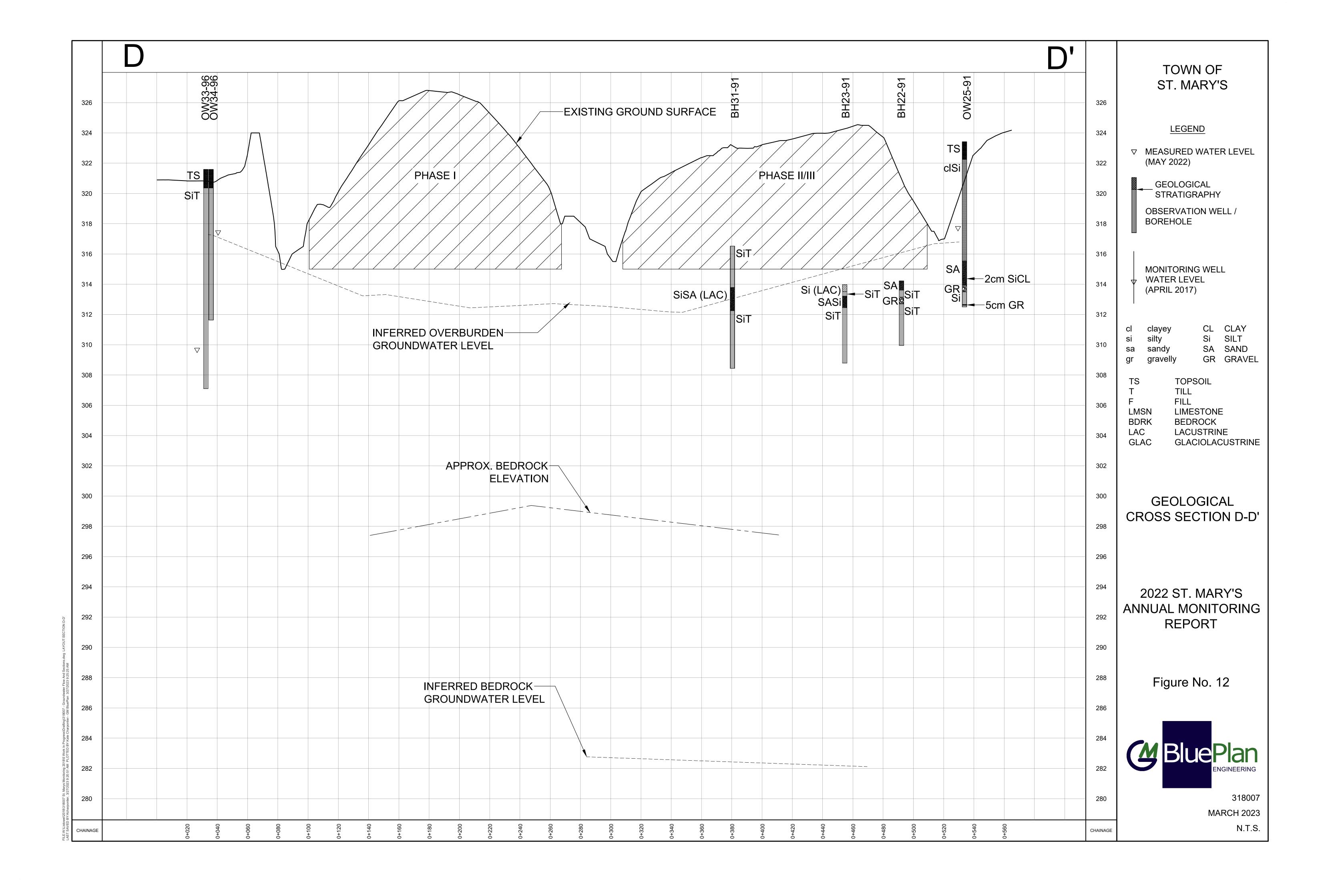
WATERCOURSE

CROSS SECTION LOCATIONS


AIR PHOTO


2022 ST. MARY'S ANNUAL MONITORING REPORT


Figure No. 8



318007 MARCH 2023 N.T.S.

Ministry of the Environment Ministère de l'Environnement

AMENDED PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

NUMBER A150203 Issue Date: June 24, 2010

The Corporation of the Town of St. Marys

175 Queen St E.

Post Office Box, No. 998 St. Marys, Ontario

N4X 1B6

Site Location: St. Marys Landfill

Part of Lockhart St., Closed by R90095; Part of Lot 35 Con. Thames (Blanchard) St. Marys; Part of Lots 6, 7, 8, 9, 10, 16 & 17 and all of Lots 12, 13, 14, 18, 19 & 20 Plan 235 St. Marys, County of

Perth; Designated as Parts 2 and 3 Plan 44R-4454, Concession Thames

You have applied in accordance with Section 27 of the Environmental Protection Act for approval of:

a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, to be used for:

- o the final disposal of solid, non-hazardous waste;
- o collection and storage for diversion from final disposal of recyclable waste;
- o the acceptance, storage, packaging, bulking and subsequent transfer of Municipal Hazardous or Special Waste
- the composting of *leaf and yard waste*.

Note: Use of the site for any other type of waste is not approved under this Certificate, and requires obtaining a separate approval amending this Certificate.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- (a) "Act" means the Environmental Protection Act, R.S.O. 1990, C.E-19, as amended;
- (b) "Certificate" means this entire provisional Certificate of Approval document, issued in accordance with section 39 of the *Act*, and includes any schedules to it, the application and the supporting documentation listed in Schedule "A;
- (c) "Competent Person" or "Competent People" means a person or people who has/have the following features:

A. has/have training and knowledge of the following:

- i. relevant waste management legislation, regulations and guidelines;
- ii. major environmental concerns pertaining to the waste to be handled;
- iii. contents of the facility's Design and Operating Reports outlined in Items 8, 9 and 10 of Schedule "A" and the Operations and Maintenance Manual required by Condition 24.2 of this *Certificate*;
- iv. the terms, conditions and operating requirements of the Certificate;
- v. the *Fire Code* and how it applies to proper storage and handling of wastes that may be flammable, reactive or oxidizing;
- vi. record keeping procedures as outlined in Condition 22 of this Certificate;
- vii. occupational health and safety concerns pertaining to the wastes to be processed;
- viii. specific written procedures for the control of nuisance conditions; and
- ix. specific written procedures for refusal of unacceptable waste loads;
- **B.** through their knowledge, training and experience can carry out any necessary duties in the following, through instruction and practice:

i. use and operation of any equipment to be used at the Site;

ii. operations and management of the *Site*, in accordance with the specific job requirements of each individual *Operator*, including concern for environmental protection and health and safety standards for the *Operator* of the *Site*, identification of unacceptable wastes, procedures for refusing the processing of unacceptable wastes, proper handling of waste, proper procedures for the storage of waste and proper maintenance of the *Site*; and iii. process monitoring procedures; and

C. has/have the following training requirements:

i. is/are provided the necessary training by the Owner to become a *Competent Person* before starting at the *Site* as an *Operator*;

- ii. is/are provided training and an annual training update of the *Owner's* environmental emergency plan that is outlined in Conditions 20 of this *Certificate*; and
- iii. is/are provided refresher training on the components of a Competent Person at least annually.
- (d) "Compost Waste" means *leaf and yard waste* that has gone through the whole composting process, including curing, but did not meet the Schedule "B" criteria';
- (e) "Cured Compost" means *leaf and yard waste* that has gone through the whole composting process, including curing, and meets the Schedule "B" criteria;
- (f) "**Director**" means any Ministry employee appointed in writing by the Minister pursuant to section 5 of the *Act* as a Director for the purposes of Part V of the *Act*;
- (g) "District Manager" means the District Manager of the local district office of the Ministry in which the Site is geographically located;
- (h) "Fire Code" means Regulation 213/07 of the Fire Protection and Prevention Act, 1997;
- (i) "**LDR**" means Lands Disposal Restrictions and refers to sections 74 through 85 of Ontario Regulation 347, which prohibits the disposal of listed and characteristic hazardous wastes on land until they have been treated to meet the treatment standards under Ontario Regulation 347;
- (j) "**leaf and yard waste**" means waste consisting of natural Christmas trees and other plant materials but not tree limbs or other woody materials in excess of 7 centimetres in diameter or wood waste unless such waste has been ground;
- (k) "Ministry" and "MOE" means the Ontario Ministry of the Environment;
- (l) Municipal Hazardous or Special Waste or MHSW means household hazardous waste limited to waste classes 112, 114, 122, 145, 147, 148, 212, 213, 242, 252, 253 and 263 and also includes: paints and coatings and their containers; oil filters; oil containers of 30 litres or less for a wide range of oil products such as engine and marine oils, and hydraulic, power steering and transmission fluids; single use, dry cell batteries, e.g., non-rechargeable batteries that can be easily removed and replaced by the consumer; automotive antifreeze (engine coolant) and related containers; pressurized containers such as propane tanks and cylinders; fertilizers and their containers; and pesticides, fungicides, herbicides, insecticides and their containers; generated by households located in the geographic boundaries of the Town of St. Marys;
- (m) "OWRA" means the *Ontario Water Resources Act*, R.S.O. 1990, c. O.40, as amended;
- (n) "Ontario Regulation 189" means Ontario Regulation 189/94, Refrigerants, or as amended, made under the Act;
- (o) "**Ontario Regulation 347**" means Ontario Regulation 347, R.R.O. 1990, General Waste Management, made under the *Act*, as amended from time to time;
- (p) "Ontario Regulation 903" means Ontario Regulation 903 R.R.O. 1990, Wells, amended to Ontario Regulation

128/03, made under the OWRA;

- (q) "**Operator**" means any person, other than the *Owner's* employees, authorized by the *Owner* as having the charge, management or control of any aspect of the Site;
- (r) "Owner" means any person that is responsible for the establishment or operation of the Site being approved by this *Certificate*, and includes the The Corporation of the Town of St. Marys, its successors and assigns;
- (s) "PA" means the *Pesticides Act*, R.S.O. 1990, c. P-11, as amended from time to time;
- (t) "**PCB**" means monochlorinated and polychlorinated biphenyls or any mixture of them or any mixture that contains one or more of them;
- (u) "**Provincial Officer**" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the *OWRA* or section 5 of the or section 17 of the *PA*.
- (v) "**PWQO**" means the Provincial Water Quality Objectives included in the July 1994 publication entitled *Water Management Policies, Guidelines, Provincial Water Quality Objectives,* as amended from time to time;
- (w) "Recyclable Material" means any material set out in Schedule 1 of Ontario Regulation 101/94 of the *Act*, as amended from time to time, and scrap wood, building materials, and tires;
- (x) "RUP" means the Reasonable Use Policy (Guideline B-7) of the Ministry of the Environment;
- (y) "sensitive receptor" means any location where routine or normal activities occurring at reasonably expected times would experience adverse effect(s) from odour discharges from the Site, including one or a combination of:
 - (i) private residences or public facilities where people sleep (e.g.: single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.);
 - (ii) institutional facilities (e.g.: schools, churches, community centres, day care centres, recreational centres, etc.);
 - (iii) outdoor public recreational areas (e.g.: trailer parks, play grounds, picnic areas, etc.); and
 - (iv) other outdoor public areas where there are continuous human activities (e.g.: commercial plazas and office buildings);
- (z) "**Site**" means the entire 37 hectare waste disposal site, including the buffer lands and a landfilling site of approximately 8 hectares at Part of Lockhart St., Closed by R90095; Part of Lot 35 Con. Thames (Blanchard) St. Mary's; Part of Lots 6, 7, 8, 9, 10, 16 & 17 and all of Lots 12, 13, 14, 18, 19 & 20 Plan 235 St. Mary's, County of Perth; Designated as Parts 2 and 3 Plan 44R-4454, Concession Thames. It also includes an easement for ingress, egress and access to maintain and service the existing sewer drain located within Parts 1, 4, 5 and 6 of Plan 44R-4454;
- (aa) "Waste Transfer Station" means the part of the *Site* that is used to recover waste for reuse or recycling and to store waste and to transfer waste from the *Site* as outlined in Condition 15 of the *Certificate*;
- (bb) "waste electrical and electronic equipment" means devices listed in Schedules 1 through 7 of Ontario Regulation 393/04, Waste Electrical and Electronic Equipment made under the *Waste Diversion Act* 2002; and
- (cc) "white goods which contain refrigerants" means white goods which contain, or may contain refrigerants, and which include, but is not restricted to, refrigerators, freezers and air-conditioning systems.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1.0 Revoke and Replace

1.1 This *Certificate* revokes Provisional Certificate of Approval No. A150203 dated August 4, 1983 and the Notice issued September 4, 1991, issued under Part V of the for this *Site*. The approval given herein, including the terms and conditions

set out, replaces all previously issued approvals and related terms and conditions under Part V of the Act for this Site.

2.0 Compliance

- 2.1 The *Owner* shall ensure compliance with all the conditions of this *Certificate* and shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2.2 Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *Certificate*.

3.0 In Accordance

- 3.1 Except as otherwise provided for in this *Certificate*, the *Site* shall be designed, developed, built, operated and maintained in accordance with the applications for this *Certificate*, dated February 4, 1982, and March 31, 2008, the Design and Operation Reports referred to in Item 8, 9, and 10 of Schedule "A" and the supporting documentation listed in Schedule "A".
- 3.2 (a) Use of the *Site* for any other type of waste, or other waste management activity, is not approved under this *Certificate*, and requires obtaining a separate approval amending this *Certificate*; and
- (b) Applications to amend this *Certificate* shall include submission of a revised Design and Operations Report.

4.0 Interpretation

- 4.1 Where there is a conflict between a provision of any document, including the application, referred to in this *Certificate* and the conditions of this *Certificate*, the conditions in this *Certificate* shall take precedence.
- 4.2 Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.
- 4.3 Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.
- 4.4 The conditions of this *Certificate* are severable. If any condition of this *Certificate*, or the application of any condition of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Certificate* shall not be affected thereby.

5.0 Other Legal Obligations

- 5.1 The issuance of, and compliance with, this *Certificate* does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - (b) limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* to furnish any further information related to compliance with this *Certificate*.
- 5.2 The *Owner* shall ensure that:
- (a) all wastes at the Site are managed and disposed in accordance with the Act and Ontario Regulation 347; and
- (b) all wastes are transported to and from the *Site* by an approved waste transportation system, as defined under *Ontario Regulation 347*.
- 5.3 The *Owner* shall ensure that:
 - (a) all equipment discharging to air operating at the Site are approved under Section 9 of the Act; and

(b) all effluent is discharged in accordance with *OWRA*.

6.0 Adverse Effect

- 6.1 The *Owner* shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the *Site*, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.
- 6.2 Despite an *Owner, Operator* or any other person fulfilling any obligations imposed by this *Certificate*, the person remains responsible for any contravention of any other condition of this *Certificate* or any applicable statute, regulation, or other legal requirement resulting from any or omission that caused the adverse effect to the natural environment or impairment of water quality.

7.0 Change of Owner

- 7.1 The *Owner* shall notify the *Director*, in writing, and forward a copy of the notification to the *District Manager*, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the *Site*;
 - (b) appointment of, or a change in, the *Operator* of the *Site*;
 - (c) the name or address of the *Owner*; or
 - (d) the partners, where the *Owner* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R. S. O. 1990, c. B.17, shall be included in the notification.
- 7.2 No portion of this *Site* shall be transferred or encumbered prior to or after closing of the *Site* unless the *Director* is notified in advance and sufficient financial assurance is deposited with the *Ministry* to ensure that these conditions will be carried out.
- 7.3 In the event of any change in ownership of the works, other than change to a successor municipality, the *Owner* shall notify the successor of and provide the successor with a copy of this *Certificate*, and the *Owner* shall provide a copy of the notification to the *District Manager* and the *Director*.

8.0 Certificate of Requirement/Registration on Title

- 8.1 Within ninety (90) days of issue of this Certificate, the *Owner* shall submit to the *Director*, for his/her review, two (2) copies of a completed Certificate of Requirement and a registerable description of the *Site*.
- 8.2 Within ten (10) calendar days of receiving the Certificate of Requirement authorized by the *Director*, register the Certificate of Requirement in the appropriate Land Registry Office on title to the *Site* and submit to the *Director* the duplicate registered copy immediately following registration.
- 8.3 Pursuant to Section 197 of the *Act*, neither the *Owner* nor any person having an interest in the Property shall deal with the *Site* in any way without first giving a copy of this *Certificate*, including all amending notices, to each person acquiring an interest in the *Site* as a result of the dealing.

9.0 Inspections

- 9.1 No person shall hinder or obstruct a *Provincial Officer* from carrying out any and all inspections authorized by the *OWRA*, the *Act*, or the *PA*, of any place to which this *Certificate* relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this *Certificate* are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this Certificate;
 - (c) to inspect the *Site*, related equipment and appurtenances;

(d) to inspect the prices, procedures, or operations required by the conditions of this *Certificate*; and (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this *Certificate* or the *Act*, the *OWRA* or the *PA*.

10.0 Information and Record Retention

- 10.1 Any information requested, by the *Ministry*, concerning the *Site* and its operation under this *Certificate*, including but not limited to any records required to be kept by this *Certificate* shall be provided to the *Ministry*, upon request, in a timely manner.
- 10.2 The receipt of any information by the *Ministry* or the failure of the *Ministry* to prosecute any person or to require any person to take any action, under this *Certificate* or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the *Ministry* of any or omission of any person that contravenes any term or condition of this *Certificate* or any statute, regulation or other legal requirement; or
 - (b) acceptance by the *Ministry* of the information's completeness or accuracy.
- 10.3 Any information relating to this *Certificate* and contained in *Ministry* files may be made available to the public in accordance with the provisions of the *Freedom of Information and Protection of Privacy Act*, R.S.O. 1990, C. F-31.
- 10.4 All records and monitoring data pertaining to the operation of the Landfill required by the conditions of this *Certificate* must be retained for the contaminating life span of the Landfill except for as otherwise authorized in writing by the *Director*. All other records required by this *Certificate* shall be kept on the *Owner's* premises for a minimum period of three (3) years from the date of their creation.

11.0 Service Area

11.1 The Site shall only accept waste generated within the geographic boundaries of the Town of St. Marys.

12.0 Hours of Operation

- 12.1 This Site is approved to operate from Monday to Saturday from 7:00 a.m. to 7:00 p.m.
- 12.2 Hours of operation may be changed by the *Owner* at any time, provided that the hours are correctly posted at the *Site* gate, and that suitable public notice is given of any change.
- 12.3 No waste shall be received for disposal at the *Site* except during operating hours and while the *Site* is under the supervision of a *Competent Person*.
- 12.4 During non-operating hours, the *Site* entrance gate shall be locked and secured against access by unauthorized persons.

13.0 Signage and Security

- 13.1 The Site shall be maintained in a secure manner, such that unauthorized vehicles cannot enter the Site.
- 13.2 The *Owner* shall limit access to and from the *Site* to the approved hours of operation and when the *Site* is supervised by a *Competent Person*.
- 13.3 All waste arriving at the *Site* shall be inspected by a *Competent Person* prior to being received at the *Site* to ensure wastes are being managed and disposed of in accordance with this *Certificate*, the *Act* and Regulation 347 of the *Act*.
- 13.4 The *Owner* shall restrict the public from accessing the Compost Facility and the *MHSW* facility storage areas.
- 13.5 The *Site* shall be operated and maintained in an environmentally safe manner which ensures the health and safety of all persons and minimizes dust, odours, rodents, birds, litter, vibration, noise and any other adverse effects that may result

from the operations at the *Site*.

- 13.6 The *Owner* shall maintain a sign, readable from the nearest public road, at the entrance to this *Site* stating:
 - (a) the Owner's name;
 - (b) hours of operation; and
 - (c) a 24-hour telephone number to be used in the event of an emergency or complaint.

14.0 Landfill Operations

- 14.1 Except as otherwise provided for in this *Certificate*, the Landfill Operations at the *Site* shall be designed, developed, built, operated and maintained in accordance with the applications for this *Certificate*, dated February 4, 1982, and March 31, 2008, the Design and Operation report dated November 1992, and April 4, 2008, the Addendum to the April 4, 2008 Design and Operations report dated April 2009 and October 2009 and the supporting documentation listed in Schedule "A".
- 14.2 The *Owner* shall only receive for final disposal at the Landfill solid, non-hazardous waste.
- 14.3 a) The maximum amount of waste that can be received per day for the landfill site is 125 cubic metres; and
- b) The maximum amount of waste that can be received per year for the landfill site is 20,000 cubic metres; and
- c) Because of unusual circumstance or an emergency, upon request, the *District Manager* may provide written permission to the *Owner* to exceed the daily maximum of waste that is allowed at the *Site* up to a daily maximum of 300 cubic metres.
- 14.4 Phase I as described in Schedule "A" of this *Certificate* of the landfill site shall contain a maximum volume of 104,000 cubic metres of waste including daily cover.
- 14.5 Phase II and Phase III as described in Schedule "A" of this *Certificate* of the landfill site shall contain a maximum combined volume of 276,000 cubic metres of waste including daily cover.
- 14.6 The maximum top elevation of the landfill for Phase I and for the combined Phases II and Phase III shall be in accordance with plans that are in Items 8 and 9 of Schedule "A"
- 14.7 The final grade and contours of the landfill site shall be in accordance with the Design and Operation Reports that are identified in Items 8 and 9 of Schedule "A" of this Certificate.
- 14.8 Cover material shall be applied as follows:
 - (a) daily cover at the end of each working day, the active working face shall be covered with a minimum thickness of 150 millimetres of soil cover or an approved thickness of alternative cover material;
 - (b) intermediate cover in areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 150 millimetres of soil cover, or an approved thickness of alternative cover material, shall be placed;
 - (c) final cover in areas where landfilling has been completed to final contours, a minimum 0.6 metre thick layer of final cover soil shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours.
- 14.9 i) The following materials may be used as alternative cover material, subject to the requirements detailed in Condition 14.8:
 - (a) ground woodwaste; and
 - (b) Cured Compost; and
 - (c) Compost Waste
 - ii) Alternative materials to soil in addition to those listed in section 14.9 may be used as daily or intermediate cover provided that the alternative material has been approved by the *Director*.

- 14.10 The *Owner* is permitted to process and use ground woodwaste, as defined in *Ontario Regulation 347*, as alternative cover material, subject to the following:
- (a) All woodwaste received at the Landfill to be used as alternative cover shall:
- (i) first be inspected by a *Competent Person* to ensure that it complies with the definition of woodwaste in *Ontario Regulation 347*;
- (ii) be stored in an area where proper visible signage is posted to ensure that no other waste is commingled with it and to state that no removal of this material off-Site be done by *Site* users;
 - (b) The *Owner* shall ensure that no more than 200 cubic metres of ground woodwaste be stockpiled at the Landfill at any one time;
 - (c) Any stockpile of ground woodwaste shall be stored in an operating cell of the landfill site so that any leachate from the ground woodwaste drains into the landfill; and
 - (d) The use of the ground woodwaste as alternative cover shall be discontinued upon written direction from the *District Manager* if found to have a negative impact.
- 14.11 The *Owner* shall provide to the *Director* a Closure Plan at least two (2) years before the closure of Phase II/III of the landfill site.
- 14.12 The *Owner* shall ensure that:
 - (a) all *white goods which contain refrigerants* accepted at the *Site*, which have not been tagged by a licensed technician to verify that the equipment no longer contains refrigerants, are stored in an upright position and in such a manner to allow for the safe handling and removal from the *Site* of refrigerants as required by *Ontario Regulation 189*;
 - (b) white goods which contain refrigerants received on-site shall either have the refrigerant removed prior to removal from the *Site* or shall be shipped off-*Site* only to facilities where the refrigerants can removed by a licensed technician in accordance with *Ontario Regulation 189*; and
 - (c) a detailed log of all *white goods which contain refrigerants* received is maintained which includes the following information:
 - (i) date of the record;
 - (ii) types, quantities and source of white goods which contain refrigerants received;
 - (iii) destination of the white goods; or
 - (iv) the details on removal of refrigerants, if conducted on *Site*, and the quantities and destination of the refrigerants transferred from the *Site*.
- 14.13 Any propane cylinders shall be stored in a segregated area in a manner which prevents cylinders from being knocked over or cylinder valves from breaking.
- 14.14 Any tires shall be placed in a segregated area cleared of vegetation and other waste, in a pile no greater than 3 metres in height and 100 square metres in area.

15.0 Waste Transfer Station

- 15.1 The *Waste Transfer Station* shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- 15.2 Only waste electrical and electronic equipment, cardboard, scrap metal, blue-box recycling materials shall be accepted at the *Waste Transfer Station*,
 - (i) from the Town of St. Marys;
 - (ii) from householders responsible for those wastes; and
 - (iii) from small businesses where such wastes are considered unrelated to the operation of the business; or from small businesses where such waste qualifies for the small quantities exemption defined by *Ontario Regulation 347* except where such waste is produced in small quantities on a regular basis (e.g. printing companies).

- 15.3 The maximum amount of all waste that may be accepted per day at the *Waste Transfer Station* is 25 tonnes.
- 15.4 The maximum storage capacity of all wastes at the *Waste Transfer Station* is 100 tonnes.
- 15.5 Any cardboard stored at the *Waste Transfer Station* shall be stored in a container that has a covering to protect the cardboard from precipitation.
- 15.6 Waste accepted at the *Waste Transfer Station* shall be stored in a safe and secure manner and shall be properly handled, packaged or contained so as not to pose any threat to the general public, *Site* personnel or the environment.
- 15.7 The *Owner* shall remove all waste and *Recyclable Materials* from the *Waste Transfer Station* at an interval not exceeding ninety (90) days with the exception of electronic waste which shall be removed before the container holding the electronic waste gets full.
- 15.8 No radioactive, pathological or biomedical wastes or contaminated radioactive, pathological or biomedical wastes shall be accepted at the *Waste Transfer Station*.
- 15.9 The *Waste Transfer Station* must be maintained in a secure manner, to prevent unauthorized persons from causing negative off-*Site* impacts.
- 15.10 All waste destined for diversion shall be segregated either into bins or in designated areas. All bins and designated waste storage areas shall be clearly labelled.
- 15.11 The *waste electronic and electrical equipment* diversion program shall be operated in accordance with Item 20 of Schedule "A", and in accordance with the following requirements:
 - (a) the *Owner* shall clearly communicate the hours of operation of the *waste electronic and electrical equipment* diversion program to the public to minimize the amount of waste that is not diverted from Landfill;
 - (b) the *Owner* may receive a maximum of one (1) cubic metre per day of *waste electrical and electronic equipment;*
 - (c) a maximum of five (5) cubic metres of waste electrical and electronic equipment may be stored at the Site;
 - (d) waste electrical and electronic equipment shall be stored in a secure manner for a maximum of six (6) months; and
 - (e) no disassembly, including manual disassembly, of *waste electrical and electronic equipment* is permitted, apart from the removal of visible batteries.

16.0 Municipal Hazardous or Special Waste (MHSW)

- 16.1 The *MHSW* Facility shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- 16.2 The MHSW Facility may accept those wastes that are identified by the definition of MHSW.
- 16.3 The maximum amount of MHSW that may be accepted at the Site in any one day is one (1) tonne.
- 16.4 All *MHSW* shall be stored on *Site* in a maximum of two (2) weather resistant, lockable, 20-foot standard storage containers.
- 16.5 The Maximum amount of MHSW that may be stored at the MHSW Facility is five (5) tonnes.
- 16.6 The *Owner* shall ensure that:
 - (a) the wastes are stored in a safe and secure manner;
 - (b) the operation of this facility does not interfere with any other activities associated with this Site; and
 - (c) the wastes are properly handled, packaged or contained so as not to pose any threat to the general public, *Site* personnel and the environment.

- 16.7 (a) Wastes that are collected and stored shall be in amounts which can be safely handled at the *MHSW* Facility. In the event that larger amounts are received than anticipated, the *Owner* shall have extra drums and lab-packed containers available on the premises for the storage of the additional waste collected; and
- (b) When the *MHSW* Facility's capacity is reached, arrangements for the removal of waste shall be made as soon as possible, but in any event, within five (5) working days.
- 16.8 No storage facilities other than those approved under this *Certificate* shall be used, and fixed storage facilities shall not be moved, replaced or altered without amendment to this *Certificate*.
- 16.9 The storage facilities shall be clearly marked indicating the type and nature of the hazardous waste stored.
- 16.10 All points of access to the *MHSW* Facility shall be posted to warn that the area contains hazardous materials.
- 16.11 Smoking restrictions shall be adhered to and non-smoking signs posted as required by regulation.
- 16.12 The two 20-foot storage containers for *MHSW* shall be weather resistant, lockable, properly ventilated and shall be constructed and used in compliance with the *Fire Code*, any applicable municipal by-law and the Occupational Health and Safety of Ontario and its applicable Regulations.
- 16.13 The 20-foot storage container, shall be maintained under lock and key and access to these facilities shall be limited to trained *Site* personnel.
- 16.14 No *PCB's*, pathological waste, severely toxic waste or radioactive waste shall be accepted at the *MHSW* Facility.
- 16.15 Oil and oil-based paints which have been manufactured prior to 1972; or whose manufacturing date cannot be determined and may contain *PCBs*, shall be handled in the manner prescribed:
 - (a) the oil and oil-based paints shall not be mixed (bulked) with other paints prior to testing. Paints which are lab-packed are not considered to be mixed under this *Certificate*.
 - (b) the oil and oil-based paints shall be tested for *PCB* content. The oil and oil-based paint is considered to be a *PCB* waste, if measured levels are equal to or greater than 50 parts per million.
 - (c) the oil and oil-based paints shall not be distributed for reuse if they have any measurable *PCB* content.
 - (d) if oil and oil-based paint is found to have *PCBs* at or above 50 ppm, it shall be forthwith reported to the *District Manager* and shall be managed in accordance with *Ontario Regulation 362/92*, Waste Management *PCBs* made under the *Act*, or removed from the *Site* to an approved *PCB* storage site in accordance with written instructions from the *District Manager*.
- 16.16 Except as specified in Condition 16.15, paints collected at the *MHSW* Facility may be returned or sold to the general public for reuse provided all transactions are recorded by invoice. Information on the type and volume of paint returned to the public through this *Site* shall be recorded in the report specified in Condition 22.1.
- 16.17 The Owner shall ensure that a Competent Person is on duty at all times during the operation of the MHSW Facility.
- 16.18 The local police and fire department shall be informed of the *MHSW* Facility and this *Certificate* and shall be notified in writing of operating hours and any changes to scheduled operating hours prior to the changes being made.
- 16.19 Except as specified under Conditions 16.16, all waste collected shall be transported from the *MHSW* Facility by an approved waste management system and disposed to an approve waste disposal site certified to accept these types of wastes.
- 16.20 All containers which hold hazardous waste that have been collected at the MHSW depot at the Site shall be labelled

that these waste are not subject to LDR treatment requirements in accordance with Section 81 of Ontario Regulation 347.

17.0 Compost Operations

- 17.1 The Compost Facility is approved for open windrow composting of a maximum of 300 tonnes per month of *leaf and* vard waste.
- 17.2 The Compost Facility shall be constructed and operated in accordance with the application for a Provisional Certificate of Approval for a Waste Disposal Site submitted March 31, 2008 and supporting information referenced as Item 10 in Schedule "A"
- 17.3 The *Owner* shall ensure that incoming waste is visually inspected by a *Competent Person* to ensure that the waste meets the requirements of this *Certificate*. Unacceptable waste shall be re-directed to Landfill; and
- 17.4 (a) *Leaf and yard waste* destined for composting shall be removed to the Compost Facility on a weekly basis or whenever the capacity of the designated storage area is reached, whichever occurs first. In the event that the *leaf and yard waste* becomes odourous, the waste shall be immediately diverted to the Landfill.
- (b) At least once every year, the *Owner* shall take a representative sample of the incoming yard and leaf waste to ensure that the incoming waste meets the metals criteria listed in Schedule "B". Incoming waste which does not meet the metals criteria listed in Schedule "B" is considered unacceptable waste.
- 17.5 (a) Leaf and yard waste shall be incorporated into windrows within four (4) days of being mixed; and
- (b) Any waste that has exceeded the time restrictions in Conditions 17.5(a) shall be re-directed to the Landfill for immediate burial
- 17.6 The *Owner* shall ensure that the following operating criteria are met, as a minimum:
 - (a) all waste receipt, processing, active composting and curing shall take place in the part of the landfill that is identified by Figure 1.1 that is identified by Item 10 of Schedule "A"
 - (b) windrows shall be arranged in a manner which permits equipment access to the composting and storage areas for efficient turning of the windrows and to allow access for emergency vehicles;
 - (c) windrows shall be constructed at bulk densities and heights which promote aerobic conditions;
 - (d) all waste being composted shall be held at a temperature of at least 55 °C for a minimum of fifteen (15) days cumulative, to ensure proper bacterial growth and pathogen inactivation;
 - (e) during composting, the temperature and moisture levels of the windrows shall be monitored and recorded daily during the pathogen inactivation period and a minimum of twice weekly during the remainder of the composting process;
 - (f) during the fifteen day pathogen inactivation period, the windrows shall be turned a minimum of five (5) times; and
 - (g) compost shall be cured for six (6) months after the requirements for pathogen inactivation have been satisfied. During the curing phase, windrows shall be turned at least once per month.
- 17.7 (a) Prior to being released from the Compost Facility for unrestricted use, compost shall be monitored for quality as follows:
 - (i) a representative composite sample shall be collected for every 1000 tonnes of compost produced;
 - (ii) samples shall be analysed for criteria listed in Schedule "B";
 - (iii) all production records shall be reviewed to ensure temperature and residency time requirements for pathogen inactivation have been met;
- (b) Compost that met the temperature and residency time requirements for pathogen inactivation and the quality requirements listed in Schedule "B" of this *Certificate*, is considered to be finished compost and may be transferred off *Site* for unrestricted use;

- (c) Compost that meets the metals and foreign matter quality requirements listed in Schedule "B" of this *Certificate* but did not achieve the pathogen inactivation time or temperature requirements, or did not meet the Schedule "B" pathogen quality requirements, may be returned to the composting process for re-processing. Alternatively, the compost may be used as alternate cover material; and
 - (d) Compost that can not meet the metal or foreign matter quality requirements listed in Schedule "B" of this *Certificate* shall be considered *Compost Waste* and shall be re-directed to the Landfill for use as alternate cover material and/or burial.
- 17.8 (a) The *Owner* shall ensure that the area inside the containment berm surrounding the compost pile be graded to allow for a low-lying sump area that can used to collect leachate from the composting operation; and
 - (b) The collected leachate may be sprayed onto the landfill to enhance the daily cover;

and

- (c) If there is need to direct leachate from the composting operation to the stormwater
 - detention Basin A or to a body of water, an application and approval to amend Municipal Sewage Certificate of Approval Number 3-1577-92-936 needs to be done.
- 17.9 There shall be no discharge of wastewater to a body of water from the *Site* unless allowed by an Approval under the *OWRA*.

18.0 Nuisance Control

- 18.1 (a) The *Site* shall be operated and maintained such that the vermin, vectors, birds, dust, litter, odour, noise and traffic do not create a nuisance.
 - (b) If at any time, problems such as vermin, vectors, birds, dust, litter, odours, noise or traffic, or other nuisances are generated at the *Site* resulting in complaints, the *Owner* shall take appropriate remedial ion to eliminate the cause of such problems. Appropriate measures may include temporary stoppage of all operations until the problem has been rectified and measures have been undertaken to prevent future occurrence.
- 18.2 A litter control program shall be established and maintained by the *Owner* near the face of the active cell of the Landfill, at the Compost Facility and at the property line. The litter control program shall include, but not be limited to, regular pick up of litter and use of snow fences around the active cell of the Landfill and Compost Facility as required.
- 18.3 (a) The *Owner* shall have in place procedures to prevent adverse odour impacts from the Composting Facility including, but not limited to:
 - (i) reducing the size of windrows to promote aeration;
 - (ii) identifying unfavourable meteorological conditions and limiting activities which can reasonably be expected to generate odours during times of unfavourable meteorological conditions; and
- (b) Notwithstanding Condition 18.4, any odourous composting waste that does not respond to mitigative action within twelve (12) hours of action being taken will be re-directed to the Landfill for immediate burial.
- 18.4 The *Owner* shall operate and maintain the *Site* so that the maximum 10-minute average concentration of odour at the most impacted *sensitive receptor*, resulting from the operation of the Landfill and/or the *Compost Facility*, shall not be greater than 1.0 odour unit.

19.0 Site Inspections and Maintenance

19.1 The *Owner* shall ensure that all *MHSW* Facility storage facilities are inspected each day that the facility is in operation

by a *Competent Person* for spills, leaks or hazardous conditions.

- 19.2 The *Owner* shall ensure that:
- (a) visible portions of the Compost Facility pad are visually inspected on each operating day; and
- (b) the pad is visually inspected, and appropriate maintenance performed, as the pad surface is uncovered during windrow turning and/or removal.
- 19.3 The *Owner* shall ensure that a *Competent Person* performs daily visual inspections of the *Site* to ensure security and cleanliness of the *Site*.
- 19.4 The *Owner* shall ensure that fire extinguishers are inspected monthly and recharged annually.
- 19.5 (a) The *Owner* shall develop and put in place a preventative maintenance program, in accordance with manufacturers' recommendations, for all on-site equipment associated with the processing and managing of waste and/or processed materials; and
- (b) The preventative maintenance program shall consist of the following as a minimum:
 - (i) the program shall specifically stipulate the part of the equipment inspected for all process equipment on *Site*;
 - (ii) the frequency of the inspections required and carried out; and
 - (iii) the dates of any repairs conducted.
- 19.6 Any deficiencies noted during the inspection or maintenance activities, that might negatively impact the environment, shall be promptly corrected.

20.0 Environmental Emergency

- 20.1 Within thirty (30) days of the date of issue of this Notice, the *Owner* shall have in place an Environment Emergency Plan for the operations permitted under the *Certificate*. The Environment Emergency Plan shall include, but is not necessarily limited to:
 - (a) the prevention of, preparedness for, response to and recovery from an environmental emergency;
 - (b) a list of contingency equipment and spill clean up materials available to *Site* personnel;
 - (c) names and telephone numbers of waste management companies available for emergency response; and
 - (d) a notification protocol, with names and telephone numbers of persons to be contacted, including:
 - i. Town of St. Marys personnel,
 - ii. the Ministry District Office;
 - iii. Spills Action Centre;
 - iv. Fire Department;
 - v. Police Department;
 - vi. local Medical Officer of Health; and
 - vii. Ministry of Labour.
- 20.2 The *Owner* shall take immediate measures to clean-up spills and other discharges of any wastes. Spill clean-up material shall be stored at the *Site*, in sealed drums or in an appropriate solid waste container, until such time as it is removed to a facility approved to receive such waste.
- 20.3 The *Owner* shall require a *Competent Person* to record all spills and upsets in the log book referred to in Condition 22 of the *Certificate*. The information recorded in the log shall include:
 - (a) the nature of the spill or upset;
 - (b) the action taken for clean-up; and
 - (c) corrective action taken to prevent future occurrences.

- 20.4 The *Owner* shall require a *Competent Person* to immediately notify the *Ministry*'s Spills Action Centre at (416) 325-3000 or 1-800-268-6060 of any reportable spills or upsets.
- 20.5 The *Owner* shall ensure that adequate fire-fighting and contingency spill clean-up equipment are available at the *Site* and that the *Site* personnel are familiar with the use of such equipment and its location(s) on the *Site*.
- 20.6 The *Owner* shall ensure that:
 - (a) the contingency equipment and materials outlined in the Environment Emergency Plan are in a good state of repair, fully operational and immediately available;
 - (b) all operating personnel are fully trained in the contingency equipment and materials' use and in the procedures to be employed in the event of an emergency;
 - (c) the Environment Emergency Plan is reviewed and updated on an annual basis as a minimum; and
 - (d) the local Fire Department and the *District Manager* are given a copy of the Environment Emergency Plan and any amendments that are made to it.
- 20.7 All *Operators* and employees of the *Owner* at the *Site* shall be *Competent People*.

21.0 Complaints

- 21.1 If the *Owner* receives complaints regarding the operation of the *Site* which are environmental in nature, or have caused, or are likely to cause, a negative impact to the environment or human health or safety, the *Owner* shall respond to these complaints according to the following procedure:
 - (a) The *Owner* shall record each complaint and the information recorded shall include:
 - (i) the date, time and nature of the complaint;
 - (ii) the name, address and telephone number of the complainant if provided;
 - (iii) the activities taking place on Site at the time of the complaint; and
 - (iv) meteorological conditions:
 - (b) The *Owner*, upon notification of the complaint shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
 - (c) The *Owner* shall retain on-*Site* a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the reoccurrence of similar incidents.

22.0 Record Keeping

- 22.1 (a) The *Owner* shall maintain daily written records for waste deposited at the Landfill and managed at the *Waste Transfer Station* for each day the *Site* is in operation. The record shall included, but not necessarily be limited to:
- (i) the quantity of waste received for final disposal at the landfill;
- (ii) the quantity of waste received at the Waste Transfer Facility.
- (iii) the type and quantity of waste transferred from the *Site* for recycling and the destination of the waste diverted;
- (iv) a record of activities undertaken that operating day (e.g. placement of cover material);
- (v) a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service.
- (b) The *Owner* shall establish a monthly summary of waste received at the *MHSW* Transfer Facility which shall include, but not necessarily be limited to:
- (i) documentation of waste types and quantities;
- (ii) the quantity of any paint given to the public
- (iii) source of generation;
- (iv) ultimate disposal sites;
- (v) each incident where the capacity of the facility has been exceeded; and

- (vi) spills, upsets and environmental or other problems encountered in operating the MHSW Transfer Facility.
- (c) The *Owner* shall maintain the following records as a minimum for the Compost Facility:
- (i) daily weather data including wind speeds and wind direction;
- (ii) types and quantities of waste received;
- (iii) date and time of windrow construction and ratio of windrow mixture;
- (iv) windrow temperature and moisture readings as appropriate for each stage of processing;
- (v) date windrow was broken down and began curing;
- (vi) other activities carried out (windrow turning, moisture addition, combining windrows, sampling); and
- (vii) laboratory reports of all analysis of feedstocks, mixtures, active and Cured Compost.
- 22.2 The *Owner* shall maintain written records of all inspections and maintenance activities undertaken in accordance with Conditions 19.1 to 19.6 inclusive. All records related to the inspection and preventative maintenance programs shall be available on *Site* for inspection by a *Provincial Officer* upon request.
- 22.3 The *Owner* shall maintain a written record, at the *Site*, of employee training required by Condition 20.7. The record shall include but not necessarily be limited to:
 - (a) date of training;
 - (b) name and signature of person who has been trained; and
 - (c) description of the training provided.

23.0 Monitoring

- 23.1 (a) The *Owner* shall ensure compliance with the *RUP*.
- (b) The *Owner* shall determine compliance by retaining qualified professionals to monitor groundwater, surface water and leachate in accordance with Schedule "C";
- (c) Sampling and analyses in accordance with Schedule "C", shall occur in the spring and fall of each year; and
- (d) The monitoring program may be amended from time-to-time with the prior written consent of the *District Manager*.
- 23.2 The *Owner* shall ensure that all samples are collected using standard sampling methods. The sampling methods followed shall be referenced in the report required by Condition 25.1.
- 23.3 (a) All monitoring wells which form part of the monitoring program shall be protected from damage. Any groundwater monitoring wells that are damaged shall be repaired or replaced forthwith or properly abandoned in accordance with *Ontario Regulation 903*; and
- (b) Any monitoring wells which are no longer required for monitoring, or which need to be closed due to operational changes on the *Site*, shall be property abandoned in accordance with *Ontario Regulation 903*.
- 23.4 In the event that the results of the monitoring program are such that an off-*Site* exceedance of the criteria set by the *RUP* and/or the *PWQO* has occurred as a result of the operation of the *Site*, the *Owner* shall notify the *District Manager* as soon as reasonably possible and specify the following:
 - (a) details of the off-site exceedance, confirmatory monitoring requirements and the potential off-site impacts to surface water and groundwater users;
 - (b) the extent and timing of contingency measures to be implemented;
 - (c) modifications, if any, which should be made to the monitoring program; and
 - (d) other mitigation measures, if any, which may be necessary to reduce or prevent off-site impacts.

- 24.1 Within one year of issue of this Certificate, the *Owner* shall install a weigh scale at the *Site* to enable a tracking of the quantity of waste entering and leaving the *Site*.
- 24.2 Within ninety (90) days of issue date of this Certificate, the *Owner* shall maintain a current Operations and Maintenance Manual for the landfill, the *Waste Transfer Station*, the *MHSW* Depot and the composting operation which is consistent with the *Certificate* for the Landfill part of the *Site* for use by *Site* personnel which shall contain, but is not necessarily limited to the following:
 - (a) a *Site* plan, showing the location of key features and their dimensions at the *Site*;
 - (b) an outline of the responsibilities of personnel;
 - (c) personnel training requirements;
 - (d) proper receiving, handling, storage and recording procedures;
 - (e) procedures for handling white goods containing refrigerants; and
 - an outline of the responsibilities of MHSW Facility personnel;
 - (f) operating procedures for the composting area including processing/mixing, windrow formation, turning schedules, parameters and criteria that have to be met;
 - (g) quality control sampling and testing protocol for the Site;
 - (h) contingency and emergency response procedures including health and safety provisions for workers and best management practices for the control of dust, litter and odour;
 - (i) Leachate management;
 - (j) Landfill gas management;
 - (k) Surface water/Storm water management;
 - (1) Inspections and monitoring; and
 - (m) Complaints procedure.
- 24.3 The Operations and Maintenance Manual referred to in Condition 24.2 shall be:
- i) retained at the Site;
- ii) kept up to date through periodic revisions; and
- iii) be available for inspection by *Ministry* staff.

25.0 Annual Report

- 25.1 By March 31 of each year, The *Owner* shall prepare and submit to the *District Manager* an annual report which summarizes *Site* operations for the previous calendar year. The annual report shall include the following:
 - (a) an assessment of the egress of contaminants into groundwater and surface water, as determined by sampling and analysis conducted within the previous calendar year;
 - (b) an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the *Site*, and the adequacy of and need to implement the contingency plans;
 - (c) a report on the status of all monitoring wells and a statement as to compliance with *Ontario Regulation* 903:
 - (d) plans showing the existing contours of the Landfill; areas of landfilling operation during the reporting period; areas of intended operation during the next reporting period; areas of excavation during the reporting period; the progress of final cover, vegetative cover, and any intermediate cover application; previously existing *Site* facilities; facilities installed during the reporting period; and *Site* preparations and facilities planned for installation during the next reporting period;
 - (e) graphs showing trends through time for key indicator parameters including chloride, iron and total phosphorous for all surface water monitoring stations and Total Suspended Solids for the discharge points at the Storm Water Management Ponds, SP4A-94 and SP2B-94.
 - (f) provide information on surface water station SP2-93;
 - (g) calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Landfill during the reporting period and a calculation of the total volume of Landfill capacity used during the reporting period;
 - (h) a calculation of the remaining capacity of the Landfill and an estimate of the remaining Landfill life;
 - (i) analytical results from testing of alternative cover material;
 - (j) report on sediment build up in storm water ponds Basin A and Basin B;
 - (k) once the weigh scale is installed at the Site, a summary of the total quantity (tonnes) of waste received at

the Site by waste management activity;

- (l) a summary of the quantity of waste diverted from final disposal to recycling or reuse;
- (m) a summary of the quantity of *MHSW* collected, by waste class code and the final destination of each waste type;
- (n) a summary of the amount of *leaf and yard waste* received at the Compost Facility and the amount of finished compost transferred from the *Site*;
- (o) a summary of analytical results of samples taken from the finished compost;
- (n) a summary of any significant problems encountered during composting or curing;
- (p) a summary of any complaints received from any of the waste management activities undertaken at the *Site* and the responses made;
- (q) a discussion of any environmental and operational problems that could negatively impact the environment encountered during the operation of the *Site* and during the *Site* inspections and any mitigative actions taken;
- (r) any recommendations to minimize environmental impacts from the operation of the *Site* and to improve *Site* operations and monitoring programs in this regard; and
- (s) a summary statement as to compliance with all Conditions of this *Certificate* and with the inspection and reporting requirements of the Conditions herein.

26.0 Closure Plan

- 26.1 At least two (2) years prior to the anticipated date of closure of the Landfill, the *Owner* shall submit to the *Director* for approval, a detailed closure plan pertaining to the termination of landfilling operations at this *Site*, post-closure inspection, maintenance and monitoring, and end use. The plan shall include the following:
 - (a) a plan showing *Site* appearance after closure;
 - (b) a description of the proposed end use of the Site;
 - (c) a descriptions of the procedures for closure of the Landfill, including:
 - (i) advance notification of the public of the Landfill closure;
 - (ii) posting of a sign at the *Site* entrance indicating the Landfill is closed and identifying any alternative waste disposal arrangements;
 - (iii) completion, inspection and maintenance of the final cover and landscaping;
 - (iv) Site security;
 - (v) removal of unnecessary Landfill-related structures, buildings and facilities; and
 - (vi) final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
 - (d) a schedule indicating the time-period for implementing Conditions 26.1(c)(i) to 26.1(c)(vi) inclusive;
 - (e) descriptions of the procedures for post-closure care of the Landfill, including:
 - (i) operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and Landfill gas;
 - (ii) record keeping and reporting; and
 - (iii) complaint contact and response procedures;
 - (f) an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas; and
 - (g) an updated estimate of the contaminating life span of the Landfill, based on the results of the monitoring programs to date.
- 26.2 (a) Four (4) months prior to the permanent closure of the *MHSW* Transfer Facility, the *Waste Transfer Station* and/or Compost Facility, the *Owner* shall submit to the *District Manager* written notification of the decision to cease the *MHSW* collection program, the composting activities and/or the *Waste Transfer Station*. The written notification shall include a closure plan consisting of:
 - (i) a plan showing *Site* appearance after closure;
 - (ii) a description of the procedures to be taken for closure of the *Waste Transfer Station*, the *MHSW* Transfer Facility and/or the Compost Facility; and

- (iii) a schedule indicating the time-period for implementing closure activities; and
- (b) Within ten (10) days after closure of the *Waste Transfer Station*, the *MHSW* Transfer Facility and/or the Compost Facility, the *Owner* shall inform the *Director*, in writing, that the *Waste Transfer Station*, the *MHSW* Transfer Facility and/or the Compost Facility is/are closed and requesting that this *Certificate* be amended accordingly.

SCHEDULE "A"

This Schedule "A" forms part of this Certificate.

- 1. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February 4, 1982.
- 2. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February March 31, 2008 and signed by Kevin Luckhardt.
- 3. Hydrogeologic Investigation, St. Marys Landfill Site, Report by Conestoga-Rovers & Associates Limited, dated November 1982.
- 4. Plans prepared by Conestoga-Rovers & Associates Limited, Project No. 0645, as follows:

TITLE PLAN NO. DATE

Existing Conditions 1 November 1982 Proposed bottom Contours 2 November 1982 Proposed Final Contours 3 November 1982 Cross-Section 4 November 1982 Site Development Plan Waste Disposal Area 1 5 November 1982 Leachate Collection System 6 November 1982 Surface Water Drainage 7 November 1982

- 5. Letter dated January 27, 1983 from the Ministry of the Environment Waste Management Approvals Unit to the Town of St. Marys.
- 6. Letter dated March 21, 1983 from Conestoga-Rovers & Associates Limited to the Ministry of the Environment, Waste Management Approvals Unit.
- 7. Drawing of Proposed Berm Extension, St. Marys Landfill Site, prepared by Conestoga-Rovers and Associates Limited, dated march 25, 1983.
- 8. Design and Operation Report Phase II/III prepared by Conestoga Rovers and Associates Limited, dated November 1992.
- 9. Addendum: Design and Operations Report Update prepared by Conestoga Rovers and Associates dated April 2009
- 10: Addendum: Design and Operations Report, Leaf and Yard Composting Operations, St. Marys Landfill Site, prepared by Conestoga Rovers and Associates dated October 2009.
- 11. Letter dated January 8, 2010 with attachments from James R. Yardley, P.Eng. of Conestoga Rovers and Associates, addressed to Jim Chisholm of the Ministry.

SCHEDULE "B"

This Schedule "B" forms part of this Certificate.

Parameter Maximum concentration

Metals arsenic 13 ppm cadmium 3 ppm chromium 210 ppm

cobalt 34 ppm copper 100 ppm lead 150 ppm mercury 0.8 ppm molybdenum 5 ppm nickel 62 ppm selenium 2 ppm zinc 500 ppm

Foreign material

plastic particles greater than 3 mm in any direction 1% non-biodegradable material greater than 3 mm in any 2 % direction

Pathogens

fecal coliforms <1000 MPN*/g of total solids calculated on a dry weight basis salmonellae <3 MPN*/4g total solids calculated on a dry weight basis

* most probable number

SCHEDULE "C"

This Schedule "C" forms part of this Certificate.

ST. MARYS LANDFILL MONITORING PROGRAM

	Parameters	Field		G ene ral Chemistry					Additional		Metals		VO Cs	
	Mo nitoring Locations	Hydraulic Monitoring	pH, conductivity, temperature	chlo tide, hardness, phenols.	DOG	ВОД, аттопія	turbidity, TDS, suspended solids, total phosphorous	COD, chloride, phenols, nitrate, phosphorous, TKN, TSS	alkalin ity, sulphate	boron, iron, manganese, sodium, BTEX	calcium, magnesium	ію п, тапу апе зе	sluminum, barium, beryllium, bismuth, cadmium, chromium, cobalt, copper, lead, molyb denum, nickel potassium, silver, sodium, strontium, tungsten, v anadium, zinc	EPA 624 VOCs
	OW2-84	×	×	×	Х				×	×	×			
l	OW3-84	×	×	×	Χ						×			
Groundwater Wells	OW4-84	×	х	×	Х						×			
	OW5-84	×	х	×	Х						×			
	OVV6-84	х	х	×	Х						×	_		
	OW7-91	×	х	×	х						×	_		
	OW8 A -91	×	х	×	Х						×	_		
	OW8B-91	×	х	Х	Х						х	_		
	OV/9 A -91	×	Х	×	Х						×	_		
	OW9B-91	×	Х	×	Х						×	$ldsymbol{ldsymbol{ldsymbol{eta}}}$		
	O W15-91	×	Х	×	Х				×	×	×	_		
	O W21-91	Х	×	×	×				×	×	×	_		
l	O W25-91	×	×	×	Х						×	_		
1	O W32-96	×	×	×	Х				×	×	Х	_		
l	O W33-96	×	×	×	×						×	_		
	O W34-96	×	×	×	Х				×	×	Х	L		
<u> </u>	OW32A-02	×	×	Х	Χ				×	×	Х	_		
13	Riordan (#3)	Х	×	×	Х						×			
[# 5	Hall (#25)	×	×	×	×						Х			
Residential Wells	Riordan Farm (#26)	×	х	×	Х						Х			
	Heard (#27)	×	х	×	×						Х			
	McCurdy(#24)	×	х	×	Х						Х			
Surface Water	SP 1-93 (up stream)	×	×	Х		Х	Х				×	Х		
	SP2-93 (midstream)	×	х	Х		×	Х				×	Х		
	SP3-93 (downstream)	×	х	×		×	Х				×	Х		
	SP1B-94 (Basin Binlet)	х	х	Х		х	X				х	Х		
	SP2B-94 (Basin B outlet)	×	х	Х	L	×	Х				×	Х		
	SP3A-94 (Basin Ainlet)	×	×	Х		×	Х				×	Х		
	SP 4A-94 (Basin A outlet)	×	×	×	$ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}$	×	Х				×	Х		
	SP5A-94 (Basin Ainlet)	×	×	Х	<u> </u>	×	Χ				х	Х		
ate is	M H1 (Phase I)	Х				×		×	×		×	×	×	×
Leachate Wells	MH3(PhaseII/III)	Х				×		×	×		×	×	×	×
7	All Manholes	×												

The reasons for the imposition of these terms and conditions are as follows:

The reason for Condition 1.1 is to clarify that the previously issued Provisional Certificate of Approval No. A150203 issued on August 4, 1980, and any subsequent Notices of amendment, are no longer in effect and has been replaced and superseded by the Terms and Conditions stated in this Certificate.

The reason for Conditions 2.1, 2.2, 5.1, 5.2, 5.3, 6.1, 6.2, 10.2, 10.3 15.1, 15,2, 16.2, 16.15, 16.16. 16.17, 16.19, 16.20,

17.6, 17.8, and 17.9 is to clarify the legal rights and responsibilities of the Owner under this Certificate.

The reason for Conditions 3.1, 3.2, 14.1, 15.1, 16.1, and 17.2 is to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

The reason for Conditions 4.1, 4.2, 4.3 and 4.4 is to clarify how to interpret this Certificate in relation to the application and supporting documentation submitted by the Owner.

The reason for Condition 7.1 is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval.

The reason for Condition 7.2 is to restrict potential transfer or encumbrance of the Site without the approval of the Director. Any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Certificate.

The reason for Condition 7.3 is to ensure that subsequent owners of the Site are informed of the terms and conditions of this Certificate. This also applies to all supporting documentation listed in Schedule "A".

Conditions 8.1, 8.2 and 8.3 are included, pursuant to subsection 197(1) of the Act, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.

The reason for Condition 9.1 is to ensure that appropriate Ministry staff have ready access to the Site for inspection of the Site and its facilities, equipment, practices and operations required by the conditions in this Certificate. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act and OWRA.

The reason for Conditions 10.1 to 10.4 inclusive is to ensure the availability of records and drawings for inspection and information purposes.

The reason for Condition 11.1 is to specify the approved areas from which waste may be accepted at the Site.

The reason for Conditions 12.1, 12.2 and 12.3 is to specify the hours of operation for the Site and a mechanism for amendment of the hours of operation, as required.

The reason for Conditions 13.1, 12.4 and 15.9 is to ensure that the Site is secure when unattended to prevent vandalism or theft.

The reason for Conditions 13.2, 13.3, 13.4, 13.5 and 14.12 is to ensure the safety of the public and the protection of the environment.

The reason for Conditions 13.6 and 16.18 is to ensure that emergency responders and the public have the necessary contact information in the event of an emergency or complaint.

The reason for Condition 14.1, 14.2, 14.3 and 14.14 is to specify the types and quantities of waste that may be accepted for disposal and the placement of the waste at the Site.

The reason for Conditions 14.4, 14.5, 14.6 and 10.7 is to define the maximum amount of waste, including daily cover that is allowed at the landfill site.

The reason for Conditions 14.8, 14.9 and 14.10 is to specify the requirements for use of alternative cover material at the Site.

The reason for Condition 14.11 is to ensure that daily and intermediate cover is used to control potential nuisance effects, to facilitate vehicle access, and to ensure an acceptable appearance is maintained. The proper closure of a landfill requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the Site and ensures that waste is not filled beyond approved limits.

Conditions 14.13, 14.14, 15.4, 15.5, 15.6, 15.7, 15.8, 15.10, 15.11, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10 16.11,

16.12, 16.13, and 16.14 is included to ensure that waste storage is done in a manner, quantity and/or duration which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Condition 16.19 is to ensure that waste is transported to and from the Site in accordance with Ontario Regulation 347.

The reason for Condition 16.20 is to alert receiving waste disposal sites that the listed and/or characteristic waste is exempt from treatment requirements.

The reason for Conditions 14.3, 15.3, 16.3, 17.1 and 15.11(b) is to ensure that the types and quantities of waste received at the Site are in accordance with that approved under this Certificate.

The reason for Condition 17.3 is to ensure that only waste approved under this Certificate are received at the Site.

The reason for Conditions 17.4, 17.5, 17.6, 18.1, 18.2, 18.3, and 18.4 is to ensure that the Site is operated in a manner which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Conditions 19.1, 19.2, 19.3, 19.4, 19.5 and 19.6 is to ensure that all equipment and facilities are maintained in good working order.

The reason for Conditions 20.1 to 20.6 inclusive is to ensure that the Owner is prepared and properly equipment to take action in the event of a spill, fire or other operation upset.

The reason for Condition 21.1 is to ensure that complaints are properly and quickly resolved and that complaints and follow-up actions have been documented.

The reason for Conditions 22.1, 22.2 and 22.3 is to ensure that detailed records of Site operations are kept for inspection and information purposes.

The reason for Condition 20.7 is to ensure that the Site is only operated in the presence of trained personnel.

The reason for Condition 23.1 is to demonstrate that the landfill is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.

The reason for Condition 23.2 is to ensure that samples are collected using established sampling protocol.

The reason for Condition 23.3 is to protect the groundwater.

The reason for Condition 23.4 is to notify the Ministry of off-site groundwater contamination so that appropriate mitigative actions can be taken.

The reason for Condition 24.1 is to provide the Site with the needed technology to be able to track the amount of waste entering and leaving the Site.

The reasons for Conditions 24.2 and 24.3 is to ensure that the Operations and Maintenance Manuals are kept current and reflects actual Site practices and procedures and are current and available for inspection by Ministry staff.

The reason for Condition 25.1 is to ensure a regular review of site development, operations and monitoring data and that the review is documented and any possible improvements to Site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing Site activities and for determining the effectiveness of Site design.

The reason for Conditions 26.1, 26.2 and 14.11 is to ensure that the Site is closed in accordance with MOE standards and to protect the health and safety of the environment.

August 4, 1983.

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario M5G 1E5 AND

The Director
Section 39, Environmental Protection Act
Ministry of the Environment
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 24th day of June, 2010

Tesfaye Gebrezghi, P.Eng. Director Section 39, *Environmental Protection Act*

JC/

c: District Manager, MOE London - District Jim Yardley, Conestoga-Rovers and Associates

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 4

Issue Date: September 5, 2017

The Corporation of the Separated Town of St. Marys

175 Queen St E

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: St. Marys Landfill

1221 Water Street South

St. Marys Separated Town, County of Perth

N4X 1B6

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 and amended on December 11, 2013, November 16, 2015, and September 2, 2016 for a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, as follows:

II. The following Conditions are hereby added to this Approval:

- 31. No waste shall be disposed of at the Landfill Site under this Approval after **September 30, 2018**, or if the previously approved Site capacity of **307,950 cubic metres** including daily cover is reached, whichever comes first.
- 32. By **July 31, 2018**, the Owner shall submit to the Director an ECA application, should the Site require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours
 - (b) 2017 Annual Operations and Monitoring Report

III. The following items are hereby added to Schedule "A":

16. Application for approval dated July 18, 2017 including all supporting documents submitted (2016 AMR, et al).

The reason(s) for this amendment to the Approval is (are) as follows:

- 1. The reasons for Condition 31 is to allow for approval of extending (though not increasing) interim capacity for the Landfill Site, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.
- 2. The reason for Condition 32 is to ensure that sufficient time is given to the Ministry to process the application, in the event that the Town of St. Marys needs to secure the following year's interim

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 5th day of September, 2017

Dale Gable, P.Eng. Director

BH/

c: District Manager, MOECC London - District Kent Hunter, R.J. Burmside & Associates Limited

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 3

Issue Date: September 6, 2016

The Corporation of the Separated Town of St. Marys

175 Queen St E

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

BURNSIDE

Site Location: St. Marys Landfill

1121 Water St S

Lot 36, Concession Thames

St. Marys Separated Town, County of Perth

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 and amended on December 11, 2013 and November 16, 2015 for a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, as follows:

I. Condition 14.5 of this Approval is hereby amended as follows:

14.5 Phase II/III of the Landfill Site, as described in Schedule "A" of this Approval, shall contain a maximum combined volume of 307,950 cubic metres of waste including daily cover.

II. The following Conditions are hereby added to this Approval:

- 29. (a) No waste shall be disposed of at the Landfill Site under this Approval after September 30, 2017, or if the approved interim capacity for the period of October 1, 2016 to September 30, 2017 of 16,100 cubic metres including daily cover is reached, which shall be contained within cells 4, 7 and 8 of Phase II/III, whichever comes first.
 - (b) Not withstanding Conditions 14.6, 14.7 and 27 (b) of this Approval, the maximum top elevation and final contours, restricted to cells 4, 7 and 8B of the Phase II/III area, are extended, in accordance with Item 15 of Schedule "A".
- 30. By July 31, 2017, the Owner shall submit to the Director an ECA application, should the Site require further approval of interim capacity. The application shall include the following supporting

information:

- (a) Updated proposal of interim contours
- (b) 2016 Annual Operations and Monitoring Report

III. The following items are hereby added to Schedule "A":

15. Letter from The Corporation of the Town of St. Marys - Public Works Department to Dale Gable, Ministry of the Environment and Climate Change signed by Dave Blake, C.E.T. and dated July 25, 2016 including all attachments.

IV. The reasons for this amendment to the Approval are as follows:

- 1. The reasons for Conditions 14.5 and 29 are to allow for approval of extending interim capacity for the Landfill *Site*, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.
- 2. The reason for Condition 30 is to ensure that sufficient time is given to the *Ministry* to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;

8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 6th day of September, 2016

THIS NOTICE WAS MAILED

ON Sept 7, 2016

(Signed)

MT/

c: District Manager, MOECC London - District Kent Hunter, R.J. Burnside & Associates Limited

Yole D. Gobba

Dale Gable, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 2

Issue Date: November 16, 2015

The Corporation of the Separated Town of St. Marys Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: St. Marys Landfill

1121 Water St S

Lot 36, Concession Thames

St. Marys Separated Town, County of Perth

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 and amended on December 11, 2013 for a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, as follows:

I. Condition 14.5 is hereby amended as follows:

14.5 Phase II/III of the Landfill *Site*, as described in Schedule "A" of this *Approval*, shall contain a maximum combined volume of 291,850 cubic metres of waste including daily cover.

II. The following items are hereby added to this Approval:

- 27. (a) No waste shall be disposed of at the Landfill *Site* under this *Approval* after **September 30, 2016**, or if the approved interim capacity of 15,850 cubic metres including daily cover is reached, which shall be contained within cell 8 of Phase II/III, whichever comes first.
 - (b) Not withstanding Conditions 14.6 and 14.7 of this *Approval*, the maximum top elevation and final contours, restricted to cell 8 of the Phase II/III area, are extended, in accordance with item 14 of Schedule "A".
- 28. By **July 31, 2016**, the *Owner* shall submit to the *Director* an ECA application, should the *Site* require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours
 - (b) 2015 Annual Operations and Monitoring Report

III. The following items are hereby added to Schedule "A":

- 14. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Chad Papple, Director of Public Works, The Corporation of the Town of St. Marys, received on July 2, 2015, including the following supporting information:
 - (a) Proposed Cell Staging Plan prepared by R.J. Burnside & Associates Limited, Project No. 300032339
 - (b) 2014 Annual Operations and Monitoring Report prepared by R.J. Burnside & Associates Limited, Project No. 300032339

IV. The reasons for this amendment to the Approval are as follows:

- 1. The reasons for Conditions 14.5 and 27 are to allow for approval of extending interim capacity for the Landfill *Site*, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.
- 2. The reason for Condition 28 is to ensure that sufficient time is given to the *Ministry* to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

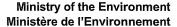
AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 16th day of November, 2015


Dale Gable, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

MT/

c: District Manager, MOECC London - District Kent Hunter, R.J. Burnside & Associates Limited

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 1

Issue Date: December 11, 2013

The Corporation of the Town of St. Marys

408 James St S St. Marys, Ontario

N4X 1B6

Site Location:

St. Marys Landfill

Part of Lockhard Street, Closed by R90095, Part of Lot 35 Con. Thames (Blanchard) St. Marys Part of Lots 6, 7, 8, 9, 10, 16 & 17 and all of Lots 12, 13, 14, 18, 19 & 20 Plan 235 St. Marys,

County of Perth; Designated as Parts 2 and 3 Plan 44R-4454, Concession Thames

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 for a waste disposal site, as follows:

I. The following definitions are hereby added:

"Approval" means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A";

"Director" means any Ministry employee pursuant to section 20.3 of Part II.1 of the EPA;

II. The following conditions are hereby revoked and replaced with:

- 11.1 The *Site* shall only accept waste generated within the geographic boundaries of the Town of St. Marys, except for MHSW depot which can accept waste from the Town of St. Marys and the Township of Perth South.
- 16.4 All MHSW shall be stored on Site in weather resistant, lockable, 20-foot standard storage containers.

III. The following documents are hereby added to Schedule "A":

- 12. Application for an Environmental Compliance Approval for a Waste Disposal Site from The Corporation of the Town of St. Marys, received on June 14, 2013, including supporting documentation submitted therewith.
- 13. Letter dated July 22, 2013 from The Corporation of the Town of St. Marys including the following information:
 - (a) Signature dated June 27, 2013 on page 7 of the application form;
 - (b) Revised pages 16 and 27 of the application form;
 - (c) Copy of public notification letter and list of recipients;
 - (d) Site address confirmation; and
 - (e) Updated Design and Operations Plan.

The reasons for this amendment to the Approval are as follows:

To expand service area for MHSW to include the Township of Perth South and to update storage containers condition for MHSW.

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010.

WINIE WILL I WI WINISH

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

<u>AND</u>

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V IL5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 11th day of December, 2013

Dale Gable, P.Eng.
Director
appointed for the purposes of Part II.1 of the
Environmental Protection Act

MC/

c: District Manager, MOE London - District Dave Blake, C.E.T., The Corporation of the Town of St. Marys

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 5

Issue Date: September 20, 2018

The Corporation of the Separated Town of St. Marys

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: St. Marys Landfill

1221 Water Street South

St. Marys Separated Town, County of Perth

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 and amended on December 11, 2013, November 16, 2015, September 6, 2016 and September 5, 2017 for a 37 hectare Waste Disposal Site consisting of a 8 hectare landfill, as follows:

I. Condition 14.5 of this *Approval* is hereby amended as follows:

14.5 Phase II/III of the Landfill *Site*, as described in Schedule "A" of this *Approval*, shall contain a maximum combined volume of 324,140 cubic metres of waste including daily cover.

II. The following Conditions are hereby added to this Approval:

- 33. (a) The amount of waste disposed of at the Landfill *Site* between October 1, 2018 and September 30, 2019 shall not exceed 16,190 cubic metres including daily cover.
 - (b) This waste shall be contained within cells 6, 7 and 8 of Phase II/III.
 - (c) No waste shall be disposed of at the Landfill *Site* after September 30, 2019 unless additional interim capacity is approved by the *Director*.
- 34. By July 31, 2019, the *Owner* shall submit to the *Director* an ECA application, should the *Site* require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours
 - (b) 2018 Annual Operations and Monitoring Report

III. The following items are hereby added to Schedule "A" of this Approval:

- 17. Letter from The Corporation of the Town of St. Marys Public Works Department to Dale Gable, Ministry of the Environment signed by Dave Blake, C.E.T. and dated June 20, 2018 including all attachments.
- 18. Email from Matt Ash, C.E.T., GM BluePlan Engineering Limited, dated September 13, 2018, RE: Approval of interim capacity for St. Marys Landfill Site (MECP Ref no. 5354-B2BLLT).

IV. The reasons for this amendment to the Approval are as follows:

- 1. The reasons for Conditions 14.5 and 33 are to allow for approval of extending interim capacity for the Landfill *Site*, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.
- 2. The reason for Condition 34 is to ensure that sufficient time is given to the *Ministry* to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 **AND**

Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of September, 2018

Dale D. Gobbe

Dale Gable, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

MT/

c: District Manager, MECP London - District Jennette Walker, GM BluePlan Engineering Ltd., The Corporation of the Separated Town of St. Marys

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Notice No. 6

Issue Date: October 4, 2019

The Corporation of the Separated Town of St. Marys

175 Queen St E

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: 1221 Water Street South

St. Marys Separated Town, County of Perth

N4X 1B6

You are hereby notified that I have amended Approval No. A150203 issued on June 24, 2010 and amended on December 11, 2013, November 16, 2015, September 6, 2016, September 5, 2017 and September 20, 2018 for a 37 hectare Waste Disposal Site consisting of a 8 hectare landfill, as follows:

I. Condition 14.5 of this *Approval* is hereby amended as follows:

14.5 Phase II/III of the Landfill *Site*, as described in Schedule "A" of this *Approval*, shall contain a maximum combined volume of 330,050 cubic metres of waste including daily cover.

II. The following Conditions are hereby added to this Approval:

- 35. (a) The amount of waste disposed of at the Landfill *Site* between October 1, 2019 and September 30, 2020 shall not exceed 15,050 cubic metres including daily cover.
 - (b) This waste shall be contained within cells 5, 6, 7 and 8 of Phase II/III.
 - (c) No waste shall be disposed of at the Landfill *Site* after September 30, 2020 unless additional interim capacity is approved by the *Director*.
- 36. By July 31, 2020, the *Owner* shall submit to the *Director* an ECA application, should the *Site* require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours.

(b) 2019 Annual Operations and Monitoring Report.

III. The following items are hereby added to Schedule "A" of this Approval:

- 19. Letter dated July 22, 2019 from The Corporation of the Town of St. Marys Public Works Department addressed to Director, Client Services and Permissions Branch, Ministry of the Environment signed by Dave Blake, C.E.T., including all attachments.
- 20. Email from Dave Blake, The Corporation of the Town of St. Marys, dated October 4, 2019, Reclarification on filling in cell 5 of Phase II/III, and working slopes.

IV. The reasons for this amendment to the *Approval* are as follows:

- 1. The reasons for Conditions 14.5 and 35 are to allow for approval of extending interim capacity for the Landfill *Site*, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.
- 2. The reason for Condition 36 is to ensure that sufficient time is given to the *Ministry* to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

This Notice shall constitute part of the approval issued under Approval No. A150203 dated June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and:
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 4th day of October, 2019

Mohsen Keyvani, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

MT/

c: District Manager, MECP London - District Al Bringleson, GM Blue Plan Engineering Limited

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Issue Date: November 16, 2020

The Corporation of the Separated Town of St. Marys

175 Queen St E

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: 1221 Water Street South

St. Marys Separated Town, County of Perth

N4X 1B6

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, to be used for:

- the final disposal of solid, non-hazardous waste;
- collection and storage for diversion from final disposal of recyclable waste;
- the acceptance, storage, packaging, bulking and subsequent transfer of Municipal Hazardous or Special Waste
- the composting of leaf and yard waste.

Note: Use of the site for any other type of waste is not approved under this ECA, and requires obtaining a separate approval amending this ECA.

For the purpose of this environmental compliance approval, the following definitions apply:

"Act" means the Environmental Protection Act, R.S.O. 1990, C.E-19, as amended;

"Approval" or "ECA" means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A";

"Competent Person" or "Competent People" means a person or people who has/have the following features:

- **A.** has/have training and knowledge of the following:
- i. relevant waste management legislation, regulations and guidelines;

- ii. major environmental concerns pertaining to the waste to be handled;
- iii. contents of the facility's Design and Operating Reports outlined in Items 8, 9 and 10 of Schedule "A" and the Operations and Maintenance Manual required by Condition 24.2 of this ECA;
- iv. the terms, conditions and operating requirements of the ECA;
- v. the Fire Code and how it applies to proper storage and handling of wastes that may be flammable, reactive or oxidizing;
- vi. record keeping procedures as outlined in Condition 22 of this ECA;
- vii. occupational health and safety concerns pertaining to the wastes to be processed;
- viii. specific written procedures for the control of nuisance conditions; and
- ix. specific written procedures for refusal of unacceptable waste loads;
- **B.** through their knowledge, training and experience can carry out any necessary duties in the following, through instruction and practice:
- i. use and operation of any equipment to be used at the Site;
- ii. operations and management of the Site, in accordance with the specific job requirements of each individual Operator, including concern for environmental protection and health and safety standards for the Operator of the Site, identification of unacceptable wastes, procedures for refusing the processing of unacceptable wastes, proper handling of waste, proper procedures for the storage of waste and proper maintenance of the Site; and
- iii. process monitoring procedures; and
- **C.** has/have the following training requirements:
- i. is/are provided the necessary training by the Owner to become a Competent Person before starting at the Site as an Operator;
- ii. is/are provided training and an annual training update of the Owner's environmental emergency plan that is outlined in Conditions 20 of this ECA; and
- iii. is/are provided refresher training on the components of a Competent Person at least annually;

"Compost Waste" means leaf and yard waste that has gone through the whole composting process, including curing, but did not meet the Schedule "B" criteria';

"Cured Compost" means leaf and yard waste that has gone through the whole composting process, including curing, and meets the Schedule "B" criteria;

"Director" means any Ministry employee pursuant to section 20.3 of Part II.1 of the EPA;

"District Manager" means the District Manager of the local district office of the Ministry in which the Site is geographically located;

"Fire Code" means Regulation 213/07 of the Fire Protection and Prevention Act, 1997;

"LDR" means Lands Disposal Restrictions and refers to sections 74 through 85 of Regulation 347, which prohibits the disposal of listed and characteristic hazardous wastes on land until they have been treated to meet the treatment standards under Regulation 347;

"Leaf and yard waste" means waste consisting of natural Christmas trees and other plant materials but not tree limbs or other woody materials in excess of 7 centimetres in diameter or wood waste unless such waste has been ground;

"Ministry" and "MECP" means the Ontario Ministry of the Environment, Conservation and Parks;

Municipal Hazardous or Special Waste or MHSW means household hazardous waste limited to waste classes 112, 114, 122, 145, 147, 148, 212, 213, 242, 252, 253 and 263 and also includes: paints and coatings and their containers; oil filters; oil containers of 30 litres or less for a wide range of oil products such as engine and marine oils, and hydraulic, power steering and transmission fluids; single use, dry cell batteries, e.g., non-rechargeable batteries that can be easily removed and replaced by the consumer; automotive antifreeze (engine coolant) and related containers; pressurized containers such as propane tanks and cylinders; fertilizers and their containers; and pesticides, fungicides, herbicides, insecticides and their containers; generated by households located in the geographic boundaries of the Town of St. Marys;

"Ontario Regulation 189" means Ontario Regulation 189/94, Refrigerants, or as amended, made under the Act;

"Ontario Regulation 903" means Ontario Regulation 903 – R.R.O. 1990, Wells, amended to Ontario Regulation 128/03, made under the OWRA;

"Operator" means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the Site;

"Owner" means any person that is responsible for the establishment or operation of the Site being approved by this ECA, and includes the The Corporation of the Town of St. Marys, its successors and assigns;

"OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;

"PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;

"PCB" means monochlorinated and polychlorinated biphenyls or any mixture of them or any mixture that contains one or more of them;

"Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the OWRA or section 5 of the or section 17 of the PA.

"PWQO" means the Provincial Water Quality Objectives included in the July 1994 publication entitled Water Management Policies, Guidelines, Provincial Water Quality Objectives, as amended from time to time:

"Recyclable Material" means any material set out in Schedule 1 of Ontario Regulation 101/94 of the Act, as amended from time to time, and scrap wood, building materials, and tires;

"Regulation 347" means Regulation 347, R.R.O. 1990, General - Waste Management, made under the Act, as amended from time to time;

"RUP" means the Reasonable Use Policy (Guideline B-7) of the Ministry of the Environment;

"Sensitive receptor" means any location where routine or normal activities occurring at reasonably expected times would experience adverse effect(s) from odour discharges from the Site, including one or a combination of:

- (i) private residences or public facilities where people sleep (e.g.: single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.);
- (ii) institutional facilities (e.g.: schools, churches, community centres, day care centres, recreational centres, etc.);
- (iii) outdoor public recreational areas (e.g.: trailer parks, play grounds, picnic areas, etc.); and
- (iv) other outdoor public areas where there are continuous human activities (e.g.: commercial plazas and office buildings);

"Site" means the entire 37 hectare waste disposal site located at 1221 Water Street South, St. Marys Separated Town, County of Perth, including the buffer lands and a landfilling site of approximately 8 hectares at Part of Lockhart St., Closed by R90095; Part of Lot 35 Con. Thames (Blanchard) St. Mary's; Part of Lots 6, 7, 8, 9, 10, 16 & 17 and all of Lots 12, 13, 14, 18, 19 & 20 Plan 235 St. Mary's, County of Perth; Designated as Parts 2 and 3 Plan 44R-4454, Concession Thames. It also includes an easement for ingress, egress and access to maintain and service the existing sewer drain located within Parts 1, 4, 5 and 6 of Plan 44R-4454;

"Waste Transfer Station" means the part of the Site that is used to recover waste for reuse or recycling and to store waste and to transfer waste from the Site as outlined in Condition 15 of the ECA;

"Waste electrical and electronic equipment" means devices listed in Schedules 1 through 7 of Ontario Regulation 393/04, Waste Electrical and Electronic Equipment made under the Waste Diversion Act 2002; and

"White goods which contain refrigerants" means white goods which contain, or may contain refrigerants, and which include, but is not restricted to, refrigerators, freezers and air-conditioning systems.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1.0 Revoke and Replace

1.1 This ECA revokes Provisional Certificate of Approval No. A150203 dated August 4, 1983 and the Notice issued September 4, 1991, as well as the ECA No. A150203 issued on June 24, 2010 and subsequent Notices under that ECA, issued under Part V of the Act for this Site. The approval given herein, including the terms and conditions set out, replaces all previously issued approvals and related terms and conditions under Part V of the Act for this Site.

2.0 Compliance

- 2.1 The Owner shall ensure compliance with all the conditions of this ECA and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this ECA and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2.2 Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this ECA.

3.0 <u>In Accordance</u>

- Except as otherwise provided for in this ECA, the Site shall be designed, developed, built, operated and maintained in accordance with the applications for this ECA, dated February 4, 1982, and March 31, 2008, the Design and Operation Reports referred to in Item 8, 9, and 10 of Schedule "A" and the supporting documentation listed in Schedule "A".
- 3.2 (a) Use of the Site for any other type of waste, or other waste management activity, is not approved under this ECA, and requires obtaining a separate approval amending this ECA; and
 - (b) Applications to amend this ECA shall include submission of a revised Design and Operations Report.

4.0 Interpretation

- 4.1 Where there is a conflict between a provision of any document, including the application, referred to in this ECA and the conditions of this ECA, the conditions in this ECA shall take precedence.
- 4.2 Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the Ministry approved the amendment.
- 4.3 Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

4.4 The conditions of this ECA are severable. If any condition of this ECA, or the application of any condition of this ECA to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this ECA shall not be affected thereby.

5.0 Other Legal Obligations

- 5.1 The issuance of, and compliance with, this ECA does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Owner to furnish any further information related to compliance with this ECA.
- 5.2 The Owner shall ensure that:
 - (a) all wastes at the Site are managed and disposed in accordance with the Act and Regulation 347; and
 - (b) all wastes are transported to and from the Site by an approved waste transportation system, as defined under Regulation 347.
- 5.3 The Owner shall ensure that:
 - (a) all equipment discharging to air operating at the Site are approved under Section 9 of the Act; and
 - (b) all effluent is discharged in accordance with OWRA.

6.0 Adverse Effect

- 6.1 The Owner shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the Site, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.
- 6.2 Despite an Owner, Operator or any other person fulfilling any obligations imposed by this ECA, the person remains responsible for any contravention of any other condition of this ECA or any applicable statute, regulation, or other legal requirement resulting from any or omission that caused the adverse effect to the natural environment or impairment of water quality.

7.0 Change of Owner

- 7.1 The Owner shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the Site;
 - (b) appointment of, or a change in, the Operator of the Site;
 - (c) the name or address of the Owner; or
 - (d) the partners, where the Owner is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O. 1990, c. B.17, shall be included in the notification.

- 7.2 No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- 7.3 In the event of any change in ownership of the works, other than change to a successor municipality, the Owner shall notify the successor of and provide the successor with a copy of this ECA, and the Owner shall provide a copy of the notification to the District Manager and the Director.

8.0 <u>Certificate of Requirement/Registration on Title</u>

- 8.1 Within ninety (90) days of issue of this ECA, the Owner shall submit to the Director, for his/her review, two (2) copies of a completed Certificate of Requirement and a registerable description of the Site.
- 8.2 Within ten (10) calendar days of receiving the Certificate of Requirement authorized by the Director, register the Certificate of Requirement in the appropriate Land Registry Office on title to the Site and submit to the Director the duplicate registered copy immediately following registration.
- 8.3 Pursuant to Section 197 of the Act, neither the Owner nor any person having an interest in the Property shall deal with the Site in any way without first giving a copy of this ECA, including all amending notices, to each person acquiring an interest in the Site as a result of the dealing.

9.0 Inspections

- 9.1 No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the Act, or the PA, of any place to which this ECA relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this ECA are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this ECA:
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the prices, procedures, or operations required by the conditions of this ECA; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this ECA or the Act, the OWRA or the PA.

10.0 <u>Information and Record Retention</u>

10.1 Any information requested, by the Ministry, concerning the Site and its operation under this ECA, including but not limited to any records required to be kept by this ECA shall be provided to the Ministry, upon request, in a timely manner.

- 10.2 The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action, under this ECA or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the Ministry of any or omission of any person that contravenes any term or condition of this ECA or any statute, regulation or other legal requirement; or
 - (b) acceptance by the Ministry of the information's completeness or accuracy.
- 10.3 Any information relating to this ECA and contained in Ministry files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, R.S.O. 1990, C. F-31.
- 10.4 All records and monitoring data pertaining to the operation of the Landfill required by the conditions of this ECA must be retained for the contaminating life span of the Landfill except for as otherwise authorized in writing by the Director. All other records required by this ECA shall be kept on the Owner's premises for a minimum period of three (3) years from the date of their creation.

11.0 Service Area

11.1 The Site shall only accept waste generated within the geographic boundaries of the Town of St. Marys, except for MHSW depot which can accept waste from the Town of St. Marys and the Township of Perth South.

12.0 Hours of Operation

- 12.1 This Site is approved to operate from Monday to Saturday from 7:00 a.m. to 7:00 p.m.
- Hours of operation may be changed by the Owner at any time, provided that the hours are correctly posted at the Site gate, and that suitable public notice is given of any change.
- 12.3 No waste shall be received for disposal at the Site except during operating hours and while the Site is under the supervision of a Competent Person.
- 12.4 During non-operating hours, the Site entrance gate shall be locked and secured against access by unauthorized persons.

13.0 Signage and Security

- 13.1 The Site shall be maintained in a secure manner, such that unauthorized vehicles cannot enter the Site.
- 13.2 The Owner shall limit access to and from the Site to the approved hours of operation and when the Site is supervised by a Competent Person.
- 13.3 All waste arriving at the Site shall be inspected by a Competent Person prior to being received at

- the Site to ensure wastes are being managed and disposed of in accordance with this ECA, the Act and Regulation 347 of the Act.
- 13.4 The Owner shall restrict the public from accessing the Compost Facility and the MHSW facility storage areas.
- 13.5 The Site shall be operated and maintained in an environmentally safe manner which ensures the health and safety of all persons and minimizes dust, odours, rodents, birds, litter, vibration, noise and any other adverse effects that may result from the operations at the Site.
- 13.6 The Owner shall maintain a sign, readable from the nearest public road, at the entrance to this Site stating:
 - (a) the Owner's name;
 - (b) hours of operation; and
 - (c) a 24-hour telephone number to be used in the event of an emergency or complaint.

14.0 Landfill Operations

- 14.1 Except as otherwise provided for in this ECA, the Landfill Operations at the Site shall be designed, developed, built, operated and maintained in accordance with the applications for this ECA, dated February 4, 1982, and March 31, 2008, the Design and Operation report dated November 1992, and April 4, 2008, the Addendum to the April 4, 2008 Design and Operations report dated April 2009 and October 2009 and the supporting documentation listed in Schedule "A".
- 14.2 The Owner shall only receive for final disposal at the Landfill solid, non-hazardous waste.
- 14.3 a) The maximum amount of waste that can be received per day for the landfill site is 125 cubic metres; and
 - b) The maximum amount of waste that can be received per year for the landfill site is 20,000 cubic metres; and
 - c) Because of unusual circumstance or an emergency, upon request, the District Manager may provide written permission to the Owner to exceed the daily maximum of waste that is allowed at the Site up to a daily maximum of 300 cubic metres.
- 14.4 Phase I as described in Schedule "A" of this ECA of the landfill site shall contain a maximum volume of 104,000 cubic metres of waste including daily cover.
- 14.5 Phase II/III of the Landfill Site, as described in Schedule "A" of this Approval, shall contain a maximum combined volume of 336,050 cubic metres of waste including daily cover.
- 14.6 The maximum top elevation of the landfill for Phase I and for the combined Phases II and Phase III shall be in accordance with plans that are in Items 8 and 9 of Schedule "A"

- 14.7 The final grade and contours of the landfill site shall be in accordance with the Design and Operation Reports that are identified in Items 8 and 9 of Schedule "A" of this ECA.
- 14.8 Cover material shall be applied as follows:
 - (a) daily cover at the end of each working day, the active working face shall be covered with a minimum thickness of 150 millimetres of soil cover or an approved thickness of alternative cover material;
 - (b) intermediate cover in areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 150 millimetres of soil cover, or an approved thickness of alternative cover material, shall be placed;
 - (c) final cover in areas where landfilling has been completed to final contours, a minimum 0.6 metre thick layer of final cover soil shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours.
- 14.9 i) The following materials may be used as alternative cover material, subject to the requirements detailed in Condition 14.8:
 - (a) ground woodwaste; and
 - (b) Cured Compost; and
 - (c) Compost Waste
 - ii) Alternative materials to soil in addition to those listed in section 14.9 may be used as daily or intermediate cover provided that the alternative material has been approved by the Director.
- 14.10 The Owner is permitted to process and use ground woodwaste, as defined in Regulation 347, as alternative cover material, subject to the following:
 - (a) All woodwaste received at the Landfill to be used as alternative cover shall:
 - (i) first be inspected by a Competent Person to ensure that it complies with the definition of woodwaste in Regulation 347;
 - (ii) be stored in an area where proper visible signage is posted to ensure that no other waste is commingled with it and to state that no removal of this material off-Site be done by Site users;
 - (b) The Owner shall ensure that no more than 200 cubic metres of ground woodwaste be stockpiled at the Landfill at any one time;
 - (c) Any stockpile of ground woodwaste shall be stored in an operating cell of the landfill site so that any leachate from the ground woodwaste drains into the landfill; and
 - (d) The use of the ground woodwaste as alternative cover shall be discontinued upon written direction from the District Manager if found to have a negative impact.
- 14.11 The Owner shall provide to the Director a Closure Plan at least two (2) years before the closure of Phase II/III of the landfill site.
- 14.12 The Owner shall ensure that:
 - (a) all white goods which contain refrigerants accepted at the Site, which have not been tagged by a licensed technician to verify that the equipment no longer contains refrigerants, are stored in an upright position and in such a manner to allow for the safe handling and removal from the Site of refrigerants as required by Ontario Regulation 189;

- (b) white goods which contain refrigerants received on-site shall either have the refrigerant removed prior to removal from the Site or shall be shipped off-Site only to facilities where the refrigerants can removed by a licensed technician in accordance with Ontario Regulation 189; and
- (c) a detailed log of all white goods which contain refrigerants received is maintained which includes the following information:
 - (i) date of the record;
 - (ii) types, quantities and source of white goods which contain refrigerants received;
 - (iii) destination of the white goods; or
 - (iv) the details on removal of refrigerants, if conducted on Site, and the quantities and destination of the refrigerants transferred from the Site.
- 14.13 Any propane cylinders shall be stored in a segregated area in a manner which prevents cylinders from being knocked over or cylinder valves from breaking.
- 14.14 Any tires shall be placed in a segregated area cleared of vegetation and other waste, in a pile no greater than 3 metres in height and 100 square metres in area.

15.0 Waste Transfer Station

- 15.1 The Waste Transfer Station shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- Only waste electrical and electronic equipment, cardboard, scrap metal, blue-box recycling materials shall be accepted at the Waste Transfer Station,
 - (i) from the Town of St. Marys;
 - (ii) from householders responsible for those wastes; and
 - (iii) from small businesses where such wastes are considered unrelated to the operation of the business; or from small businesses where such waste qualifies for the small quantities exemption defined by Regulation 347 except where such waste is produced in small quantities on a regular basis (e.g. printing companies).
- 15.3 The maximum amount of all waste that may be accepted per day at the Waste Transfer Station is 25 tonnes.
- 15.4 The maximum storage capacity of all wastes at the Waste Transfer Station is 100 tonnes.
- 15.5 Any cardboard stored at the Waste Transfer Station shall be stored in a container that has a covering to protect the cardboard from precipitation.
- 15.6 Waste accepted at the Waste Transfer Station shall be stored in a safe and secure manner and shall be properly handled, packaged or contained so as not to pose any threat to the general public, Site personnel or the environment.
- 15.7 The Owner shall remove all waste and Recyclable Materials from the Waste Transfer Station at an interval not exceeding ninety (90) days with the exception of

- electronic waste which shall be removed before the container holding the electronic waste gets full.
- 15.8 No radioactive, pathological or biomedical wastes or contaminated radioactive, pathological or biomedical wastes shall be accepted at the Waste Transfer Station.
- 15.9 The Waste Transfer Station must be maintained in a secure manner, to prevent unauthorized persons from causing negative off-Site impacts.
- 15.10 All waste destined for diversion shall be segregated either into bins or in designated areas. All bins and designated waste storage areas shall be clearly labelled.
- 15.11 The waste electronic and electrical equipment diversion program shall be operated in accordance with Item 20 of Schedule "A", and in accordance with the following requirements:
 - (a) the Owner shall clearly communicate the hours of operation of the waste electronic and electrical equipment diversion program to the public to minimize the amount of waste that is not diverted from Landfill;
 - (b) the Owner may receive a maximum of one (1) cubic metre per day of waste electrical and electronic equipment;
 - (c) a maximum of five (5) cubic metres of waste electrical and electronic equipment may be stored at the Site;
 - (d) waste electrical and electronic equipment shall be stored in a secure manner for a maximum of six (6) months; and
 - (e) no disassembly, including manual disassembly, of waste electrical and electronic equipment is permitted, apart from the removal of visible batteries.

16.0 Municipal Hazardous or Special Waste (MHSW)

- 16.1 The MHSW Facility shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- 16.2 The MHSW Facility may accept those wastes that are identified by the definition of MHSW.
- 16.3 The maximum amount of MHSW that may be accepted at the Site in any one day is one (1) tonne.
- 16.4 All MHSW shall be stored on Site in weather resistant, lockable, 20-foot standard storage containers.
- 16.5 The Maximum amount of MHSW that may be stored at the MHSW Facility is five (5) tonnes.
- 16.6 The Owner shall ensure that:
 - (a) the wastes are stored in a safe and secure manner;
 - (b) the operation of this facility does not interfere with any other activities associated with this Site; and
 - (c) the wastes are properly handled, packaged or contained so as not to pose any threat to the general public, Site personnel and the environment.

- 16.7 (a) Wastes that are collected and stored shall be in amounts which can be safely handled at the MHSW Facility. In the event that larger amounts are received than anticipated, the Owner shall have extra drums and lab-packed containers available on the premises for the storage of the additional waste collected; and
 - (b) When the MHSW Facility's capacity is reached, arrangements for the removal of waste shall be made as soon as possible, but in any event, within five (5) working days.
- 16.8 No storage facilities other than those approved under this ECA shall be used, and fixed storage facilities shall not be moved, replaced or altered without amendment to this ECA.
- 16.9 The storage facilities shall be clearly marked indicating the type and nature of the hazardous waste stored.
- 16.10 All points of access to the MHSW Facility shall be posted to warn that the area contains hazardous materials.
- 16.11 Smoking restrictions shall be adhered to and non-smoking signs posted as required by regulation.
- 16.12 The two 20-foot storage containers for MHSW shall be weather resistant, lockable, properly ventilated and shall be constructed and used in compliance with the Fire Code, any applicable municipal by-law and the Occupational Health and Safety of Ontario and its applicable Regulations.
- 16.13 The 20-foot storage container, shall be maintained under lock and key and access to these facilities shall be limited to trained Site personnel.
- 16.14 No PCB's, pathological waste, severely toxic waste or radioactive waste shall be accepted at the MHSW Facility.
- 16.15 Oil and oil-based paints which have been manufactured prior to 1972; or whose manufacturing date cannot be determined and may contain PCBs, shall be handled in the manner prescribed:
 - (a) the oil and oil-based paints shall not be mixed (bulked) with other paints prior to testing. Paints which are lab-packed are not considered to be mixed under this ECA.
 - (b) the oil and oil-based paints shall be tested for PCB content. The oil and oil-based paint is considered to be a PCB waste, if measured levels are equal to or greater than 50 parts per million.
 - (c) the oil and oil-based paints shall not be distributed for reuse if they have any measurable PCB content.
 - (d) if oil and oil-based paint is found to have PCBs at or above 50 ppm, it shall be forthwith reported to the District Manager and shall be managed in accordance with Ontario Regulation 362/92, Waste Management PCBs made under the Act, or removed from the Site to an approved PCB storage site in accordance with written instructions from the District Manager.

- 16.16 Except as specified in Condition 16.15, paints collected at the MHSW Facility may be returned or sold to the general public for reuse provided all transactions are recorded by invoice. Information on the type and volume of paint returned to the public through this Site shall be recorded in the report specified in Condition 22.1.
- 16.17 The Owner shall ensure that a Competent Person is on duty at all times during the operation of the MHSW Facility.
- 16.18 The local police and fire department shall be informed of the MHSW Facility and this ECA and shall be notified in writing of operating hours and any changes to scheduled operating hours prior to the changes being made.
- 16.19 Except as specified under Conditions 16.16, all waste collected shall be transported from the MHSW Facility by an approved waste management system and disposed to an approve waste disposal site certified to accept these types of wastes.
- 16.20 All containers which hold hazardous waste that have been collected at the MHSW depot at the Site shall be labelled that these waste are not subject to LDR treatment requirements in accordance with Section 81 of Regulation 347.

17.0 <u>Compost Operations</u>

- 17.1 The Compost Facility is approved for open windrow composting of a maximum of 300 tonnes per month of leaf and yard waste.
- 17.2 The Compost Facility shall be constructed and operated in accordance with the application for a Provisional Certificate of Approval for a Waste Disposal Site submitted March 31, 2008 and supporting information referenced as Item 10 in Schedule "A".
- 17.3 The Owner shall ensure that incoming waste is visually inspected by a Competent Person to ensure that the waste meets the requirements of this Certificate.

 Unacceptable waste shall be re-directed to Landfill; and
- 17.4 (a) Leaf and yard waste destined for composting shall be removed to the Compost Facility on a weekly basis or whenever the capacity of the designated storage area is reached, whichever occurs first. In the event that the leaf and yard waste becomes odourous, the waste shall be immediately diverted to the Landfill.
 - (b) At least once every year, the Owner shall take a representative sample of the incoming yard and leaf waste to ensure that the incoming waste meets the metals criteria listed in Schedule "B". Incoming waste which does not meet the metals criteria listed in Schedule "B" is considered unacceptable waste.
- 17.5 (a) Leaf and yard waste shall be incorporated into windrows within four (4) days of being mixed; and

- (b) Any waste that has exceeded the time restrictions in Conditions 17.5(a) shall be re-directed to the Landfill for immediate burial.
- 17.6 The Owner shall ensure that the following operating criteria are met, as a minimum:
 - (a) all waste receipt, processing, active composting and curing shall take place in the part of the landfill that is identified by Figure 1.1 that is identified by Item 10 of Schedule "A"
 - (b) windrows shall be arranged in a manner which permits equipment access to the composting and storage areas for efficient turning of the windrows and to allow access for emergency vehicles;
 - (c) windrows shall be constructed at bulk densities and heights which promote aerobic conditions;
 - (d) all waste being composted shall be held at a temperature of at least 55 °C for a minimum of fifteen (15) days cumulative, to ensure proper bacterial growth and pathogen inactivation;
 - (e) during composting, the temperature and moisture levels of the windrows shall be monitored and recorded daily during the pathogen inactivation period and a minimum of twice weekly during the remainder of the composting process;
 - (f) during the fifteen day pathogen inactivation period, the windrows shall be turned a minimum of five (5) times; and
 - (g) compost shall be cured for six (6) months after the requirements for pathogen inactivation have been satisfied. During the curing phase, windrows shall be turned at least once per month.
- 17.7 (a) Prior to being released from the Compost Facility for unrestricted use, compost shall be monitored for quality as follows:
 - (i) a representative composite sample shall be collected for every 1000 tonnes of compost produced;
 - (ii) samples shall be analysed for criteria listed in Schedule "B";
 - (iii) all production records shall be reviewed to ensure temperature and residency time requirements for pathogen inactivation have been met;
 - (b) Compost that met the temperature and residency time requirements for pathogen inactivation and the quality requirements listed in Schedule "B" of this ECA, is considered to be finished compost and may be transferred off Site for unrestricted use;
 - (c) Compost that meets the metals and foreign matter quality requirements listed in Schedule "B" of this ECA but did not achieve the pathogen inactivation time or temperature requirements, or did not meet the Schedule "B" pathogen quality requirements, may be returned to the composting process for re-processing. Alternatively, the compost may be used as alternate cover material; and
 - (d) Compost that can not meet the metal or foreign matter quality requirements listed in Schedule "B" of this ECA shall be considered Compost Waste and shall be re-directed to the Landfill for use as alternate cover material and/or burial.

- 17.8 (a) The Owner shall ensure that the area inside the containment berm surrounding the compost pile be graded to allow for a low-lying sump area that can used to collect leachate from the composting operation; and
 - (b) The collected leachate may be sprayed onto the landfill to enhance the daily cover; and
 - (c) If there is need to direct leachate from the composting operation to the stormwater detention Basin A or to a body of water, an application and approval to amend Municipal Sewage Certificate of Approval Number 3-1577-92-936 needs to be done.
- 17.9 There shall be no discharge of wastewater to a body of water from the Site unless allowed by an Approval under the OWRA.

18.0 Nuisance Control

- 18.1 (a) The Site shall be operated and maintained such that the vermin, vectors, birds, dust, litter, odour, noise and traffic do not create a nuisance.
 - (b) If at any time, problems such as vermin, vectors, birds, dust, litter, odours, noise or traffic, or other nuisances are generated at the Site resulting in complaints, the Owner shall take appropriate remedial ion to eliminate the cause of such problems. Appropriate measures may include temporary stoppage of all operations until the problem has been rectified and measures have been undertaken to prevent future occurrence.
- 18.2 A litter control program shall be established and maintained by the Owner near the face of the active cell of the Landfill, at the Compost Facility and at the property line. The litter control program shall include, but not be limited to, regular pick up of litter and use of snow fences around the active cell of the Landfill and Compost Facility as required.
- 18.3 (a) The Owner shall have in place procedures to prevent adverse odour impacts from the Composting Facility including, but not limited to:
 - (i) reducing the size of windrows to promote aeration;
 - (ii) identifying unfavourable meteorological conditions and limiting activities which can reasonably be expected to generate odours during times of unfavourable meteorological conditions; and
 - (b) Notwithstanding Condition 18.4, any odourous composting waste that does not respond to mitigative action within twelve (12) hours of action being taken will be re-directed to the Landfill for immediate burial.
- 18.4 The Owner shall operate and maintain the Site so that the maximum 10-minute average concentration of odour at the most impacted sensitive receptor, resulting from the operation of the Landfill and/or the Compost Facility, shall not be greater than 1.0 odour unit.

19.0 <u>Site Inspections and Maintenance</u>

- 19.1 The Owner shall ensure that all MHSW Facility storage facilities are inspected each day that the facility is in operation by a Competent Person for spills, leaks or hazardous conditions.
- 19.2 The Owner shall ensure that:
 - (a) visible portions of the Compost Facility pad are visually inspected on each operating day; and
 - (b) the pad is visually inspected, and appropriate maintenance performed, as the pad surface is uncovered during windrow turning and/or removal.
- 19.3 The Owner shall ensure that a Competent Person performs daily visual inspections of the Site to ensure security and cleanliness of the Site.
- 19.4 The Owner shall ensure that fire extinguishers are inspected monthly and recharged annually.
- 19.5 (a) The Owner shall develop and put in place a preventative maintenance program, in accordance with manufacturers' recommendations, for all on-site equipment associated with the processing and managing of waste and/or processed materials; and
 - (b) The preventative maintenance program shall consist of the following as a minimum:
 - (i) the program shall specifically stipulate the part of the equipment inspected for all process equipment on Site;
 - (ii) the frequency of the inspections required and carried out; and
 - (iii) the dates of any repairs conducted.
- 19.6 Any deficiencies noted during the inspection or maintenance activities, that might negatively impact the environment, shall be promptly corrected.

20.0 Environmental Emergency

- 20.1 Within thirty (30) days of the date of issue of this Notice, the Owner shall have in place an Environment Emergency Plan for the operations permitted under the ECA. The Environment Emergency Plan shall include, but is not necessarily limited to:
 - (a) the prevention of, preparedness for, response to and recovery from an environmental emergency;
 - (b) a list of contingency equipment and spill clean up materials available to Site personnel;
 - (c) names and telephone numbers of waste management companies available for emergency response; and
 - (d) a notification protocol, with names and telephone numbers of persons to be contacted, including:
 - i. Town of St. Marys personnel,
 - ii. the Ministry District Office;
 - iii. Spills Action Centre;
 - iv. Fire Department;
 - v. Police Department;

- vi. local Medical Officer of Health; and
- vii. Ministry of Labour.
- 20.2 The Owner shall take immediate measures to clean-up spills and other discharges of any wastes. Spill clean-up material shall be stored at the Site, in sealed drums or in an appropriate solid waste container, until such time as it is removed to a facility approved to receive such waste.
- 20.3 The Owner shall require a Competent Person to record all spills and upsets in the log book referred to in Condition 22 of the ECA. The information recorded in the log shall include:
 - (a) the nature of the spill or upset;
 - (b) the action taken for clean-up; and
 - (c) corrective action taken to prevent future occurrences.
- 20.4 The Owner shall require a Competent Person to immediately notify the Ministry's Spills Action Centre at (416) 325-3000 or 1-800-268-6060 of any reportable spills or upsets.
- 20.5 The Owner shall ensure that adequate fire-fighting and contingency spill clean-up equipment are available at the Site and that the Site personnel are familiar with the use of such equipment and its location(s) on the Site.
- 20.6 The Owner shall ensure that:
 - (a) the contingency equipment and materials outlined in the Environment Emergency Plan are in a good state of repair, fully operational and immediately available;
 - (b) all operating personnel are fully trained in the contingency equipment and materials' use and in the procedures to be employed in the event of an emergency;
 - (c) the Environment Emergency Plan is reviewed and updated on an annual basis as a minimum; and
 - (d) the local Fire Department and the District Manager are given a copy of the Environment Emergency Plan and any amendments that are made to it.
- 20.7 All Operators and employees of the Owner at the Site shall be Competent People.

21.0 Complaints

- 21.1 If the Owner receives complaints regarding the operation of the Site which are environmental in nature, or have caused, or are likely to cause, a negative impact to the environment or human health or safety, the Owner shall respond to these complaints according to the following procedure:
 - (a) The Owner shall record each complaint and the information recorded shall include:
 - (i) the date, time and nature of the complaint;
 - (ii) the name, address and telephone number of the complainant if provided;
 - (iii) the activities taking place on Site at the time of the complaint; and
 - (iv) meteorological conditions;
 - (b) The Owner, upon notification of the complaint shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and

(c) The Owner shall retain on-Site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the reoccurrence of similar incidents.

22.0 Record Keeping

- 22.1 (a) The Owner shall maintain daily written records for waste deposited at the Landfill and managed at the Waste Transfer Station for each day the Site is in operation. The record shall included, but not necessarily be limited to:
 - (i) the quantity of waste received for final disposal at the landfill;
 - (ii) the quantity of waste received at the Waste Transfer Facility.
 - (iii) the type and quantity of waste transferred from the Site for recycling and the destination of the waste diverted;
 - (iv) a record of activities undertaken that operating day (e.g. placement of cover material);
 - (v) a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service.
 - (b) The Owner shall establish a monthly summary of waste received at the MHSW Transfer Facility which shall include, but not necessarily be limited to:
 - (i) documentation of waste types and quantities;
 - (ii) the quantity of any paint given to the public
 - (iii) source of generation;
 - (iv) ultimate disposal sites;
 - (v) each incident where the capacity of the facility has been exceeded; and
 - (vi) spills, upsets and environmental or other problems encountered in operating the MHSW Transfer Facility.
 - (c) The Owner shall maintain the following records as a minimum for the Compost Facility:
 - (i) daily weather data including wind speeds and wind direction;
 - (ii) types and quantities of waste received;
 - (iii) date and time of windrow construction and ratio of windrow mixture;
 - (iv) windrow temperature and moisture readings as appropriate for each stage of processing;
 - (v) date windrow was broken down and began curing;
 - (vi) other activities carried out (windrow turning, moisture addition, combining windrows, sampling); and
 - (vii) laboratory reports of all analysis of feedstocks, mixtures, active and Cured Compost.
- 22.2 The Owner shall maintain written records of all inspections and maintenance activities undertaken in accordance with Conditions 19.1 to 19.6 inclusive. All records related to the inspection and preventative maintenance programs shall be available on Site for inspection by a Provincial Officer upon request.

- 22.3 The Owner shall maintain a written record, at the Site, of employee training required by Condition 20.7. The record shall include but not necessarily be limited to:
 - (a) date of training;
 - (b) name and signature of person who has been trained; and
 - (c) description of the training provided.

23.0 **Monitoring**

- 23.1 (a) The Owner shall ensure compliance with the RUP.
 - (b) The Owner shall determine compliance by retaining qualified professionals to monitor groundwater, surface water and leachate in accordance with Schedule "C";
 - (c) Sampling and analyses in accordance with Schedule "C", shall occur in the spring and fall of each year; and
 - (d) The monitoring program may be amended from time-to-time with the prior written consent of the District Manager.
- 23.2 The Owner shall ensure that all samples are collected using standard sampling methods. The sampling methods followed shall be referenced in the report required by Condition 25.1.
- 23.3 (a) All monitoring wells which form part of the monitoring program shall be protected from damage. Any groundwater monitoring wells that are damaged shall be repaired or replaced forthwith or properly abandoned in accordance with Ontario Regulation 903; and
 - (b) Any monitoring wells which are no longer required for monitoring, or which need to be closed due to operational changes on the Site, shall be property abandoned in accordance with Ontario Regulation 903.
- 23.4 In the event that the results of the monitoring program are such that an off-Site exceedance of the criteria set by the RUP and/or the PWQO has occurred as a result of the operation of the Site, the Owner shall notify the District Manager as soon as reasonably possible and specify the following:
 - (a) details of the off-site exceedance, confirmatory monitoring requirements and the potential off-site impacts to surface water and groundwater users;
 - (b) the extent and timing of contingency measures to be implemented;
 - (c) modifications, if any, which should be made to the monitoring program; and
 - (d) other mitigation measures, if any, which may be necessary to reduce or prevent off-site impacts.

24.0 General Provisions

24.1 Within one year of issue of this ECA, the Owner shall install a weigh scale at the Site to enable a tracking of the quantity of waste entering and leaving the Site.

- 24.2 Within ninety (90) days of issue date of this ECA, the Owner shall maintain a current Operations and Maintenance Manual for the landfill, the Waste Transfer Station, the MHSW Depot and the composting operation which is consistent with the ECA for the Landfill part of the Site for use by Site personnel which shall contain, but is not necessarily limited to the following:
 - (a) a Site plan, showing the location of key features and their dimensions at the Site;
 - (b) an outline of the responsibilities of personnel;
 - (c) personnel training requirements;
 - (d) proper receiving, handling, storage and recording procedures;
 - (e) procedures for handling white goods containing refrigerants; and an outline of the responsibilities of MHSW Facility personnel;
 - (f) operating procedures for the composting area including processing/mixing, windrow formation, turning schedules, parameters and criteria that have to be met;
 - (g) quality control sampling and testing protocol for the Site;
 - (h) contingency and emergency response procedures including health and safety provisions for workers and best management practices for the control of dust, litter and odour;
 - (i) Leachate management;
 - (i) Landfill gas management;
 - (k) Surface water/Storm water management;
 - (l) Inspections and monitoring; and
 - (m) Complaints procedure.
- 24.3 The Operations and Maintenance Manual referred to in Condition 24.2 shall be:
 - i) retained at the Site;
 - ii) kept up to date through periodic revisions; and
 - iii) be available for inspection by Ministry staff.

25.0 Annual Report

- 25.1 By March 31 of each year, The Owner shall prepare and submit to the District Manager an annual report which summarizes Site operations for the previous calendar year. The annual report shall include the following:
 - (a) an assessment of the egress of contaminants into groundwater and surface water, as determined by sampling and analysis conducted within the previous calendar year;
 - (b) an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plans;
 - (c) a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;
 - (d) plans showing the existing contours of the Landfill; areas of landfilling operation during the reporting period; areas of intended operation during the next reporting period; areas of excavation during the reporting period; the progress of final cover, vegetative cover, and any intermediate cover application; previously existing Site facilities; facilities installed during the reporting period; and Site preparations and facilities planned for installation during the next reporting period;

- (e) graphs showing trends through time for key indicator parameters including chloride, iron and total phosphorous for all surface water monitoring stations and Total Suspended Solids for the discharge points at the Storm Water Management Ponds, SP4A-94 and SP2B-94.
- (f) provide information on surface water station SP2-93;
- (g) calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Landfill during the reporting period and a calculation of the total volume of Landfill capacity used during the reporting period;
- (h) a calculation of the remaining capacity of the Landfill and an estimate of the remaining Landfill life;
- (i) analytical results from testing of alternative cover material;
- (j) report on sediment build up in storm water ponds Basin A and Basin B;
- (k) once the weigh scale is installed at the Site, a summary of the total quantity (tonnes) of waste received at the Site by waste management activity;
- (1) a summary of the quantity of waste diverted from final disposal to recycling or reuse;
- (m) a summary of the quantity of MHSW collected, by waste class code and the final destination of each waste type;
- (n) a summary of the amount of leaf and yard waste received at the Compost Facility and the amount of finished compost transferred from the Site;
- (o) a summary of analytical results of samples taken from the finished compost;
- (n) a summary of any significant problems encountered during composting or curing;
- (p) a summary of any complaints received from any of the waste management activities undertaken at the Site and the responses made;
- (q) a discussion of any environmental and operational problems that could negatively impact the environment encountered during the operation of the Site and during the Site inspections and any mitigative actions taken;
- (r) any recommendations to minimize environmental impacts from the operation of the Site and to improve Site operations and monitoring programs in this regard; and
- (s) a summary statement as to compliance with all Conditions of this ECA and with the inspection and reporting requirements of the Conditions herein.

26.0 Closure Plan

- 26.1 At least two (2) years prior to the anticipated date of closure of the Landfill, the Owner shall submit to the Director for approval, a detailed closure plan pertaining to the termination of landfilling operations at this Site, post-closure inspection, maintenance and monitoring, and end use. The plan shall include the following:
 - (a) a plan showing Site appearance after closure;
 - (b) a description of the proposed end use of the Site;
 - (c) a descriptions of the procedures for closure of the Landfill, including:
 - (i) advance notification of the public of the Landfill closure;
 - (ii) posting of a sign at the Site entrance indicating the Landfill is closed and identifying any alternative waste disposal arrangements;
 - (iii) completion, inspection and maintenance of the final cover and landscaping;
 - (iv) Site security;
 - (v) removal of unnecessary Landfill-related structures, buildings and facilities; and

- (vi) final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
- (d) a schedule indicating the time-period for implementing Conditions 26.1(c)(i) to 26.1(c)(vi) inclusive:
- (e) descriptions of the procedures for post-closure care of the Landfill, including:
 - (i) operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and Landfill gas;
 - (ii) record keeping and reporting; and
 - (iii) complaint contact and response procedures;
- (f) an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas; and
- (g) an updated estimate of the contaminating life span of the Landfill, based on the results of the monitoring programs to date.
- 26.2 (a) Four (4) months prior to the permanent closure of the MHSW Transfer Facility, the Waste Transfer Station and/or Compost Facility, the Owner shall submit to the District Manager written notification of the decision to cease the MHSW collection program, the composting activities and/or the Waste Transfer Station. The written notification shall include a closure plan consisting of:
 - (i) a plan showing Site appearance after closure;
 - (ii) a description of the procedures to be taken for closure of the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility; and
 - (iii) a schedule indicating the time-period for implementing closure activities; and
 - (b) Within ten (10) days after closure of the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility, the Owner shall inform the Director, in writing, that the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility is/are closed and requesting that this ECA be amended accordingly.

27.0 Interim Capacity

- 27. (a) The amount of waste disposed of at the Landfill Site between October 1, 2020 and September 30, 2021 shall not exceed 15,050 cubic metres including daily cover.
 - (b) This waste shall be contained within cells 5, 6, 7 and 8 of Phase II/III.
 - (c) No waste shall be disposed of at the Landfill Site after September 30, 2021 unless additional interim capacity is approved by the Director.
- 28. By July 31, 2021, the Owner shall submit to the Director an ECA application, should the Site require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours.
 - (b) 2020 Annual Operations and Monitoring Report.

SCHEDULE "A"

This Schedule "A" forms part of this ECA.

- 1. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February 4, 1982.
- 2. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February March 31, 2008 and signed by Kevin Luckhardt.
- 3. Hydrogeologic Investigation, St. Marys Landfill Site, Report by Conestoga-Rovers & Associates Limited, dated November 1982.
- 4. Plans prepared by Conestoga-Rovers & Associates Limited, Project No. 0645, as follows:

TITLE	PLAN NO.	DATE
Existing Conditions	1	November 1982
Proposed bottom Contours	2	November 1982
Proposed Final Contours	3	November 1982
Cross-Section	4	November 1982
Site Development Plan		
Waste Disposal Area 1	5	November 1982
Leachate Collection System	6	November 1982
Surface Water Drainage	7	November 1982

- 5. Letter dated January 27, 1983 from the Ministry of the Environment Waste Management Approvals Unit to the Town of St. Marys.
- 6. Letter dated March 21, 1983 from Conestoga-Rovers & Associates Limited to the Ministry of the Environment, Waste Management Approvals Unit.
- 7. Drawing of Proposed Berm Extension, St. Marys Landfill Site, prepared by Conestoga-Rovers and Associates Limited, dated march 25, 1983.
- 8. Design and Operation Report Phase II/III prepared by Conestoga Rovers and Associates Limited, dated November 1992.
- 9. Addendum: Design and Operations Report Update prepared by Conestoga Rovers and Associates dated April 2009
- 10. Addendum: Design and Operations Report, Leaf and Yard Composting Operations, St. Marys Landfill Site, prepared by Conestoga Rovers and Associates dated October 2009.
- 11. Letter dated January 8, 2010 with attachments from James R. Yardley, P.Eng. of Conestoga Rovers and Associates, addressed to Jim Chisholm of the Ministry.

- 12. Application for an Environmental Compliance Approval for a Waste Disposal Site from The Corporation of the Town of St. Marys, received on June 14, 2013, including supporting documentation submitted therewith.
- 13. Letter dated July 22, 2013 from The Corporation of the Town of St. Marys including the following information:
 - (a) Signature dated June 27, 2013 on page 7 of the application form;
 - (b) Revised pages 16 and 27 of the application form;
 - (c) Copy of public notification letter and list of recipients;
 - (d) Site address confirmation; and
 - (e) Updated Design and Operations Plan.
- 14. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Chad Papple, Director of Public Works, The Corporation of the Town of St. Marys, received on July 2, 2015, including the following supporting information:
 - (a) Proposed Cell Staging Plan prepared by R.J. Burnside & Associates Limited, Project No. 300032339
 - (b) 2014 Annual Operations and Monitoring Report prepared by R.J. Burnside & Associates Limited, Project No. 300032339
- 15. Letter from The Corporation of the Town of St. Marys Public Works Department to Dale Gable, Ministry of the Environment and Climate Change signed by Dave Blake, C.E.T. and dated July 25, 2016 including all attachments.
- 16. Application for approval dated July 18, 2017 including all supporting documents submitted (2016 AMR, et al).
- 17. Letter from The Corporation of the Town of St. Marys Public Works Department to Dale Gable, Ministry of the Environment signed by Dave Blake, C.E.T. and dated June 20, 2018 including all attachments.
- 18. Email from Matt Ash, C.E.T., GM BluePlan Engineering Limited, dated September 13, 2018, RE: Approval of interim capacity for St. Marys Landfill Site (MECP Ref no. 5354-B2BLLT).
- 19. Letter dated July 22, 2019 from The Corporation of the Town of St. Marys Public Works Department addressed to Director, Client Services and Permissions Branch, Ministry of the Environment signed by Dave Blake, C.E.T., including all attachments.
- 20. Email from Dave Blake, The Corporation of the Town of St. Marys, dated October 4, 2019, Reclarification on filling in cell 5 of Phase II/III, and working slopes.
- 21. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Dave Blake, Environmental Services Supervisor, The Corporation of the Town of St. Marys, Signed on July 29, 2020, including the following supporting information:
 - (a) Annual Operations & Monitoring Report (2019), St. Mary's Landfill Site, MOECC

Certificate of Approval No. A150203. Prepared by GM Blue Plan Engineering, Report dated and signed March 2020 and the pdf published electronically on 03/24/2020 8:27 AM.

SCHEDULE "B"

This Schedule "B" forms part of this ECA.

Parameter	Maximum concentration					
<u>Metals</u>						
arsenic	13 ppm					
cadmium	3 ppm					
chromium	210 ppm					
cobalt	34 ppm					
copper	100 ppm					
lead	150 ppm					
mercury	0.8 ppm					
molybdenum	5 ppm					
nickel	62 ppm					
selenium	2 ppm					
zine	500 ppm					
Foreign material plastic particles greater than 3 mm in any denon-biodegradable material greater than 3 m direction						
Pathogens fecal coliforms a dry weight basis salmonellae weight basis	<1000 MPN*/g of total solids calculated on <3 MPN*/4g total solids calculated on a dry					

^{*} most probable number

SCHEDULE "C"

This Schedule "C" forms part of this ECA. ST. MARYS LANDFILL MONITORING PROGRAM

	Param eters			G ene ral Chemistry			Additional		Metals			VO Cs		
Talametr				\vdash				,			\vdash			
	Mo nito ring Locations	Hydraulic Monitoring	pH, conductivity, temperature	chlo tid e, hardness, phenols.	200	BOD _{3,} ammonia	tu bid #y, TDS, suspended solids, total phosphorous	COD, chloride, phenols, nitrate, phosphorous, TKN, TSS	alkalm#y, sulphate	boron, iron, manganese, sodium, BTEX	calcium, magnesium	ж эи в Зивиг 'и ол;	aluminum, barium, beryllium, bismuth, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel potassium, silver, sodium, strontium, tungsten, vanadium, zinc	EPA 624 VOCs
	OW2-84	×	×	×	Х				×	×	×			
1	OW3-84	×	×	×	Х						×			
1	OW4-84	х	×	×	Х						×			
l	OW5-84	×	х	Х	Х						Х			
Groundwater Wells	OW6-84	Х	×	×	Х						×			
[≋ੌ	OW7-91	Х	×	×	×						×			
<u> </u>	OW8 A -91	Х	×	×	Х						Х			
Ιŧξ	OW8B-91 OW9 A-91	×	×	×	×						×			
122	OW9B-91	×	×	×	X						×	\vdash		
∰	0 W15-91	×	×	×	X				×	×	×			
Ιĝ	O W21-91	×	×	×	×				×	×	×			
હ	0 W25-91	×	×	×	x					_^	×			
1	O W32-96	×	×	×	X				×	×	×			
1	O W33-96	×	×	×	×					-	×			
1	O W34-96	×	×	×	X				×	×	×	Н		
1	OW32A-02	×	×	X	Х				×	×	×			
Residential Wells	Riordan (#3)	Х	×	×	Х						×			
sident: Wells	Hall (#25)	×	×	×	×						Х			
\ <u>\$</u> \$	Riordan Farm (#26)	×	×	×	Х						Х			
آھ <u>ا</u>	He ard (#27)	×	×	×	×						Х			
<u> </u>	McCurdy (#24)	х	×	×	Х						Х			
	SP 1-93 (up stream)	×	×	Х		Х	X				×	×		
123	SP2-93 (midstream)	×	×	Х		×	Х				×	X		
[\ \\$	SP3-93 (downstream)	х	×	×		×	Х				×			
[R	SP1B-94 (Basin Binlet)	х	×	Х		×	Х				×	×		
Įž.	SP2B-94 (Basin B outlet)	×	×	Х	<u> </u>	×	Х				×	Х		
Surface Water	SP3A-94 (Basin Ainlet)	×	×	Х	<u> </u>	×	X				×	Х		
	SP 4A-94 (Basin A outlet)	×	×	×	<u> </u>	×	Х				×	X		
	SP5A-94 (Basin Ainlet)	×	×	Х	<u> </u>	×	Х				×	X		
ate is	M H1 (Phase I)	Х				×		×	×		×	×	×	×
Leachate Wells	MH3(Phase II/III)	Х				×		×	×		×	×	×	×
H	All Manholes	Х												

The reasons for the imposition of these terms and conditions are as follows:

The reason for Condition 1.1 is to clarify that the previously issued Provisional Certificate of Approval No. A150203 issued on August 4, 1980, and any subsequent Notices of amendment, are no longer in effect and has been replaced and superseded by the Terms and Conditions stated in this ECA.

The reason for Conditions 2.1, 2.2, 5.1, 5.2, 5.3, 6.1, 6.2, 10.2, 10.3 15.1, 15,2, 16.2, 16.15, 16.16. 16.17, 16.19, 16.20, 17.6, 17.8, and 17.9 is to clarify the legal rights and responsibilities of the Owner under this ECA.

The reason for Conditions 3.1, 3.2, 14.1, 15.1, 16.1, and 17.2 is to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

The reason for Conditions 4.1, 4.2, 4.3 and 4.4 is to clarify how to interpret this ECA in relation to the application and supporting documentation submitted by the Owner.

The reason for Condition 7.1 is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval.

The reason for Condition 7.2 is to restrict potential transfer or encumbrance of the Site without the approval of the Director. Any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this ECA.

The reason for Condition 7.3 is to ensure that subsequent owners of the Site are informed of the terms and conditions of this ECA. This also applies to all supporting documentation listed in Schedule "A".

Conditions 8.1, 8.2 and 8.3 are included, pursuant to subsection 197(1) of the Act, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.

The reason for Condition 9.1 is to ensure that appropriate Ministry staff have ready access to the Site for inspection of the Site and its facilities, equipment, practices and operations required by the conditions in this ECA. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act and OWRA.

The reason for Conditions 10.1 to 10.4 inclusive is to ensure the availability of records and drawings for inspection and information purposes.

The reason for Condition 11.1 is to specify the approved areas from which waste may be accepted at the Site.

The reason for Conditions 12.1, 12.2 and 12.3 is to specify the hours of operation for the Site and a mechanism for amendment of the hours of operation, as required.

The reason for Conditions 13.1, 12.4 and 15.9 is to ensure that the Site is secure when unattended to prevent vandalism or theft.

The reason for Conditions 13.2, 13.3, 13.4, 13.5 and 14.12 is to ensure the safety of the public and the protection of the environment.

The reason for Conditions 13.6 and 16.18 is to ensure that emergency responders and the public have the necessary contact information in the event of an emergency or complaint.

The reason for Condition 14.1, 14.2, 14.3 and 14.14 is to specify the types and quantities of waste that may be accepted for disposal and the placement of the waste at the Site.

The reason for Conditions 14.4, 14.5, 14.6 and 10.7 is to define the maximum amount of waste, including daily cover that is allowed at the landfill site.

The reason for Conditions 14.8, 14.9 and 14.10 is to specify the requirements for use of alternative cover material at the Site.

The reason for Condition 14.11 is to ensure that daily and intermediate cover is used to control potential nuisance effects, to facilitate vehicle access, and to ensure an acceptable appearance is maintained. The proper closure of a landfill requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the Site and ensures that waste is not filled beyond approved limits.

Conditions 14.13, 14.14, 15.4, 15.5, 15.6, 15.7, 15.8, 15.10, 15.11, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10 16.11, 16.12, 16.13, and 16.14 is included to ensure that waste storage is done in a manner, quantity and/or duration which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Condition 16.19 is to ensure that waste is transported to and from the Site in accordance with Regulation 347.

The reason for Condition 16.20 is to alert receiving waste disposal sites that the listed and/or characteristic waste is exempt from treatment requirements.

The reason for Conditions 14.3, 15.3, 16.3, 17.1 and 15.11(b) is to ensure that the types and quantities of waste received at the Site are in accordance with that approved under this ECA.

The reason for Condition 17.3 is to ensure that only waste approved under this ECA are received at the Site.

The reason for Conditions 17.4, 17.5, 17.6, 18.1, 18.2, 18.3, and 18.4 is to ensure that the Site is operated in a manner which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Conditions 19.1, 19.2, 19.3, 19.4, 19.5 and 19.6 is to ensure that all equipment and facilities are maintained in good working order.

The reason for Conditions 20.1 to 20.6 inclusive is to ensure that the Owner is prepared and properly equipment to take action in the event of a spill, fire or other operation upset.

The reason for Condition 21.1 is to ensure that complaints are properly and quickly resolved and that complaints and follow-up actions have been documented.

The reason for Conditions 22.1, 22.2 and 22.3 is to ensure that detailed records of Site operations are kept for inspection and information purposes.

The reason for Condition 20.7 is to ensure that the Site is only operated in the presence of trained personnel.

The reason for Condition 23.1 is to demonstrate that the landfill is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.

The reason for Condition 23.2 is to ensure that samples are collected using established sampling protocol.

The reason for Condition 23.3 is to protect the groundwater.

The reason for Condition 23.4 is to notify the Ministry of off-site groundwater contamination so that appropriate mitigative actions can be taken.

The reason for Condition 24.1 is to provide the Site with the needed technology to be able to track the amount of waste entering and leaving the Site.

The reasons for Conditions 24.2 and 24.3 is to ensure that the Operations and Maintenance Manuals are kept current and reflects actual Site practices and procedures and are current and available for inspection by Ministry staff.

The reason for Condition 25.1 is to ensure a regular review of site development, operations and monitoring data and that the review is documented and any possible improvements to Site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing Site activities and for determining the effectiveness of Site design.

The reason for Conditions 26.1, 26.2 and 14.11 is to ensure that the Site is closed in accordance with MECP standards and to protect the health and safety of the environment.

The reason for Condition 27 is to allow for approval of extending interim capacity for the Landfill Site, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.

The reason for Condition 28 is to ensure that sufficient time is given to the Ministry to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A150203 issued on June 24, 2010

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 16th day of November, 2020

Mat

Mohsen Keyvani, P.Eng.
Director
appointed for the purposes of Part II.1 of the
Environmental Protection Act

CM/

c: District Manager, MECP London - District Al Bringleson, GM Blue Plan Engineering Ltd.

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A150203

Issue Date: January 10, 2022

The Corporation of the Separated Town of St. Marys

175 Queen St E

Post Office Box, No. 998

St. Marys, Ontario

N4X 1B6

Site Location: 1221 Water Street South

St. Marys Separated Town, County of Perth

N4X 1B6

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

a 37 hectare Waste Disposal Site consisting of a 8 hectare Landfill, to be used for:

- the final disposal of solid, non-hazardous waste;
- collection and storage for diversion from final disposal of recyclable waste;
- the acceptance, storage, packaging, bulking and subsequent transfer of Municipal Hazardous or Special Waste
- the composting of leaf and yard waste.

Note: Use of the site for any other type of waste is not approved under this ECA, and requires obtaining a separate approval amending this ECA.

For the purpose of this environmental compliance approval, the following definitions apply:

"Act" means the Environmental Protection Act, R.S.O. 1990, C.E-19, as amended;

"Approval" or "ECA" means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A";

"Competent Person" or "Competent People" means a person or people who has/have the following features:

- **A.** has/have training and knowledge of the following:
- i. relevant waste management legislation, regulations and guidelines;

- ii. major environmental concerns pertaining to the waste to be handled;
- iii. contents of the facility's Design and Operating Reports outlined in Items 8, 9 and 10 of Schedule "A" and the Operations and Maintenance Manual required by Condition 24.2 of this ECA;
- iv. the terms, conditions and operating requirements of the ECA;
- v. the Fire Code and how it applies to proper storage and handling of wastes that may be flammable, reactive or oxidizing;
- vi. record keeping procedures as outlined in Condition 22 of this ECA;
- vii. occupational health and safety concerns pertaining to the wastes to be processed;
- viii. specific written procedures for the control of nuisance conditions; and
- ix. specific written procedures for refusal of unacceptable waste loads;
- **B.** through their knowledge, training and experience can carry out any necessary duties in the following, through instruction and practice:
- i. use and operation of any equipment to be used at the Site;
- ii. operations and management of the Site, in accordance with the specific job requirements of each individual Operator, including concern for environmental protection and health and safety standards for the Operator of the Site, identification of unacceptable wastes, procedures for refusing the processing of unacceptable wastes, proper handling of waste, proper procedures for the storage of waste and proper maintenance of the Site; and
- iii. process monitoring procedures; and
- **C.** has/have the following training requirements:
- i. is/are provided the necessary training by the Owner to become a Competent Person before starting at the Site as an Operator;
- ii. is/are provided training and an annual training update of the Owner's environmental emergency plan that is outlined in Conditions 20 of this ECA; and
- iii. is/are provided refresher training on the components of a Competent Person at least annually;

"Compost Waste" means leaf and yard waste that has gone through the whole composting process, including curing, but did not meet the Schedule "B" criteria';

"Cured Compost" means leaf and yard waste that has gone through the whole composting process, including curing, and meets the Schedule "B" criteria;

"Director" means any Ministry employee pursuant to section 20.3 of Part II.1 of the EPA;

"District Manager" means the District Manager of the local district office of the Ministry in which the Site is geographically located;

"Fire Code" means Regulation 213/07 of the Fire Protection and Prevention Act, 1997;

"LDR" means Lands Disposal Restrictions and refers to sections 74 through 85 of Regulation 347, which prohibits the disposal of listed and characteristic hazardous wastes on land until they have been treated to meet the treatment standards under Regulation 347;

"Leaf and yard waste" means waste consisting of natural Christmas trees and other plant materials but not tree limbs or other woody materials in excess of 7 centimetres in diameter or wood waste unless such waste has been ground;

"Ministry" and "MECP" means the Ontario Ministry of the Environment, Conservation and Parks;

Municipal Hazardous or Special Waste or MHSW means household hazardous waste limited to waste classes 112, 114, 122, 145, 147, 148, 212, 213, 242, 252, 253 and 263 and also includes: paints and coatings and their containers; oil filters; oil containers of 30 litres or less for a wide range of oil products such as engine and marine oils, and hydraulic, power steering and transmission fluids; single use, dry cell batteries, e.g., non-rechargeable batteries that can be easily removed and replaced by the consumer; automotive antifreeze (engine coolant) and related containers; pressurized containers such as propane tanks and cylinders; fertilizers and their containers; and pesticides, fungicides, herbicides, insecticides and their containers; generated by households located in the geographic boundaries of the Town of St. Marys;

"Ontario Regulation 189" means Ontario Regulation 189/94, Refrigerants, or as amended, made under the Act;

"Ontario Regulation 903" means Ontario Regulation 903 – R.R.O. 1990, Wells, amended to Ontario Regulation 128/03, made under the OWRA;

"Operator" means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the Site;

"Owner" means any person that is responsible for the establishment or operation of the Site being approved by this ECA, and includes the The Corporation of the Town of St. Marys, its successors and assigns;

"OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;

"PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;

"PCB" means monochlorinated and polychlorinated biphenyls or any mixture of them or any mixture that contains one or more of them;

"Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the OWRA or section 5 of the or section 17 of the PA.

"PWQO" means the Provincial Water Quality Objectives included in the July 1994 publication entitled Water Management Policies, Guidelines, Provincial Water Quality Objectives, as amended from time to time:

"Recyclable Material" means any material set out in Schedule 1 of Ontario Regulation 101/94 of the Act, as amended from time to time, and scrap wood, building materials, and tires;

"Regulation 347" means Regulation 347, R.R.O. 1990, General - Waste Management, made under the Act, as amended from time to time;

"RUP" means the Reasonable Use Policy (Guideline B-7) of the Ministry of the Environment;

"Sensitive receptor" means any location where routine or normal activities occurring at reasonably expected times would experience adverse effect(s) from odour discharges from the Site, including one or a combination of:

- (i) private residences or public facilities where people sleep (e.g.: single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.);
- (ii) institutional facilities (e.g.: schools, churches, community centres, day care centres, recreational centres, etc.);
- (iii) outdoor public recreational areas (e.g.: trailer parks, play grounds, picnic areas, etc.); and
- (iv) other outdoor public areas where there are continuous human activities (e.g.: commercial plazas and office buildings);

"Site" means the entire 37 hectare waste disposal site located at 1221 Water Street South, St. Marys Separated Town, County of Perth, including the buffer lands and a landfilling site of approximately 8 hectares at Part of Lockhart St., Closed by R90095; Part of Lot 35 Con. Thames (Blanchard) St. Mary's; Part of Lots 6, 7, 8, 9, 10, 16 & 17 and all of Lots 12, 13, 14, 18, 19 & 20 Plan 235 St. Mary's, County of Perth; Designated as Parts 2 and 3 Plan 44R-4454, Concession Thames. It also includes an easement for ingress, egress and access to maintain and service the existing sewer drain located within Parts 1, 4, 5 and 6 of Plan 44R-4454;

"Waste Transfer Station" means the part of the Site that is used to recover waste for reuse or recycling and to store waste and to transfer waste from the Site as outlined in Condition 15 of the ECA;

"Waste electrical and electronic equipment" means devices listed in Schedules 1 through 7 of Ontario Regulation 393/04, Waste Electrical and Electronic Equipment made under the Waste Diversion Act 2002; and

"White goods which contain refrigerants" means white goods which contain, or may contain refrigerants, and which include, but is not restricted to, refrigerators, freezers and air-conditioning systems.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1.0 Revoke and Replace

1.1 This ECA revokes ECA No. A150203 issued on November 16, 2020 issued under Part V of the Act for this Site. The approval given herein, including the terms and conditions set out, replaces all previously issued approvals and related terms and conditions under Part V of the Act for this Site.

2.0 <u>Compliance</u>

- 2.1 The Owner shall ensure compliance with all the conditions of this ECA and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this ECA and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2.2 Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this ECA.

3.0 In Accordance

- Except as otherwise provided for in this ECA, the Site shall be designed, developed, built, operated and maintained in accordance with the applications for this ECA, dated February 4, 1982, and March 31, 2008, the Design and Operation Reports referred to in Item 8, 9, and 10 of Schedule "A" and the supporting documentation listed in Schedule "A".
- 3.2 (a) Use of the Site for any other type of waste, or other waste management activity, is not approved under this ECA, and requires obtaining a separate approval amending this ECA; and
 - (b) Applications to amend this ECA shall include submission of a revised Design and Operations Report.

4.0 <u>Interpretation</u>

- 4.1 Where there is a conflict between a provision of any document, including the application, referred to in this ECA and the conditions of this ECA, the conditions in this ECA shall take precedence.
- 4.2 Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the Ministry approved the amendment.
- 4.3 Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

4.4 The conditions of this ECA are severable. If any condition of this ECA, or the application of any condition of this ECA to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this ECA shall not be affected thereby.

5.0 Other Legal Obligations

- 5.1 The issuance of, and compliance with, this ECA does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Owner to furnish any further information related to compliance with this ECA.
- 5.2 The Owner shall ensure that:
 - (a) all wastes at the Site are managed and disposed in accordance with the Act and Regulation 347; and
 - (b) all wastes are transported to and from the Site by an approved waste transportation system, as defined under Regulation 347.
- 5.3 The Owner shall ensure that:
 - (a) all equipment discharging to air operating at the Site are approved under Section 9 of the Act; and
 - (b) all effluent is discharged in accordance with OWRA.

6.0 Adverse Effect

- 6.1 The Owner shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the Site, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.
- 6.2 Despite an Owner, Operator or any other person fulfilling any obligations imposed by this ECA, the person remains responsible for any contravention of any other condition of this ECA or any applicable statute, regulation, or other legal requirement resulting from any or omission that caused the adverse effect to the natural environment or impairment of water quality.

7.0 Change of Owner

- 7.1 The Owner shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the Site;
 - (b) appointment of, or a change in, the Operator of the Site;
 - (c) the name or address of the Owner; or
 - (d) the partners, where the Owner is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O. 1990, c. B.17, shall be included in the notification.

- 7.2 No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- 7.3 In the event of any change in ownership of the works, other than change to a successor municipality, the Owner shall notify the successor of and provide the successor with a copy of this ECA, and the Owner shall provide a copy of the notification to the District Manager and the Director.

8.0 <u>Certificate of Requirement/Registration on Title</u>

- 8.1 If not previously completed, within ninety (90) days of issue of this ECA, the Owner shall submit to the Director, for his/her review, two (2) copies of a completed Certificate of Requirement and a registerable description of the Site.
- 8.2 Within ten (10) calendar days of receiving the Certificate of Requirement authorized by the Director, register the Certificate of Requirement in the appropriate Land Registry Office on title to the Site and submit to the Director the duplicate registered copy immediately following registration.
- 8.3 Pursuant to Section 197 of the Act, neither the Owner nor any person having an interest in the Property shall deal with the Site in any way without first giving a copy of this ECA, including all amending notices, to each person acquiring an interest in the Site as a result of the dealing.

9.0 Inspections

- 9.1 No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the Act, or the PA, of any place to which this ECA relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this ECA are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this ECA:
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the prices, procedures, or operations required by the conditions of this ECA; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this ECA or the Act, the OWRA or the PA.

10.0 <u>Information and Record Retention</u>

10.1 Any information requested, by the Ministry, concerning the Site and its operation under this ECA, including but not limited to any records required to be kept by this ECA shall be provided to the Ministry, upon request, in a timely manner.

- 10.2 The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action, under this ECA or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the Ministry of any or omission of any person that contravenes any term or condition of this ECA or any statute, regulation or other legal requirement; or
 - (b) acceptance by the Ministry of the information's completeness or accuracy.
- 10.3 Any information relating to this ECA and contained in Ministry files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, R.S.O. 1990, C. F-31.
- 10.4 All records and monitoring data pertaining to the operation of the Landfill required by the conditions of this ECA must be retained for the contaminating life span of the Landfill except for as otherwise authorized in writing by the Director. All other records required by this ECA shall be kept on the Owner's premises for a minimum period of three (3) years from the date of their creation.

11.0 Service Area

11.1 The Site shall only accept waste generated within the geographic boundaries of the Town of St. Marys, except for MHSW depot which can accept waste from the Town of St. Marys and the Township of Perth South.

12.0 Hours of Operation

- 12.1 This Site is approved to operate from Monday to Saturday from 7:00 a.m. to 7:00 p.m.
- Hours of operation may be changed by the Owner at any time, provided that the hours are correctly posted at the Site gate, and that suitable public notice is given of any change.
- 12.3 No waste shall be received for disposal at the Site except during operating hours and while the Site is under the supervision of a Competent Person.
- 12.4 During non-operating hours, the Site entrance gate shall be locked and secured against access by unauthorized persons.

13.0 Signage and Security

- 13.1 The Site shall be maintained in a secure manner, such that unauthorized vehicles cannot enter the Site.
- 13.2 The Owner shall limit access to and from the Site to the approved hours of operation and when the Site is supervised by a Competent Person.
- 13.3 All waste arriving at the Site shall be inspected by a Competent Person prior to being received at

- the Site to ensure wastes are being managed and disposed of in accordance with this ECA, the Act and Regulation 347 of the Act.
- 13.4 The Owner shall restrict the public from accessing the Compost Facility and the MHSW facility storage areas.
- 13.5 The Site shall be operated and maintained in an environmentally safe manner which ensures the health and safety of all persons and minimizes dust, odours, rodents, birds, litter, vibration, noise and any other adverse effects that may result from the operations at the Site.
- 13.6 The Owner shall maintain a sign, readable from the nearest public road, at the entrance to this Site stating:
 - (a) the Owner's name;
 - (b) hours of operation; and
 - (c) a 24-hour telephone number to be used in the event of an emergency or complaint.

14.0 Landfill Operations

- 14.1 Except as otherwise provided for in this ECA, the Landfill Operations at the Site shall be designed, developed, built, operated and maintained in accordance with the applications for this ECA, dated February 4, 1982, and March 31, 2008, the Design and Operation report dated November 1992, and April 4, 2008, the Addendum to the April 4, 2008 Design and Operations report dated April 2009 and October 2009 and the supporting documentation listed in Schedule "A".
- 14.2 The Owner shall only receive for final disposal at the Landfill solid, non-hazardous waste.
- 14.3 a) The maximum amount of waste that can be received per day for the landfill site is 125 cubic metres; and
 - b) The maximum amount of waste that can be received per year for the landfill site is 20,000 cubic metres; and
 - c) Because of unusual circumstance or an emergency, upon request, the District Manager may provide written permission to the Owner to exceed the daily maximum of waste that is allowed at the Site up to a daily maximum of 300 cubic metres.
- 14.4 Phase I as described in Schedule "A" of this ECA of the landfill site shall contain a maximum volume of 104,000 cubic metres of waste including daily cover.
- 14.5 Phase II/III of the Landfill Site, as described in Schedule "A" of this Approval, shall contain a maximum combined volume of 349,050 cubic metres of waste including daily cover.
- 14.6 The maximum top elevation of the landfill for Phase I and for the combined Phases II and Phase III shall be in accordance with plans that are in Items 8 and 9 of Schedule "A"

- 14.7 The final grade and contours of the landfill site shall be in accordance with the Design and Operation Reports that are identified in Items 8 and 9 of Schedule "A" of this ECA.
- 14.8 Cover material shall be applied as follows:
 - (a) daily cover at the end of each working day, the active working face shall be covered with a minimum thickness of 150 millimetres of soil cover or an approved thickness of alternative cover material;
 - (b) intermediate cover in areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 150 millimetres of soil cover, or an approved thickness of alternative cover material, shall be placed;
 - (c) final cover in areas where landfilling has been completed to final contours, a minimum 0.6 metre thick layer of final cover soil shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours.
- 14.9 i) The following materials may be used as alternative cover material, subject to the requirements detailed in Condition 14.8:
 - (a) ground woodwaste; and
 - (b) Cured Compost; and
 - (c) Compost Waste
 - ii) Alternative materials to soil in addition to those listed in section 14.9 may be used as daily or intermediate cover provided that the alternative material has been approved by the Director.
- 14.10 The Owner is permitted to process and use ground woodwaste, as defined in Regulation 347, as alternative cover material, subject to the following:
 - (a) All woodwaste received at the Landfill to be used as alternative cover shall:
 - (i) first be inspected by a Competent Person to ensure that it complies with the definition of woodwaste in Regulation 347;
 - (ii) be stored in an area where proper visible signage is posted to ensure that no other waste is commingled with it and to state that no removal of this material off-Site be done by Site users;
 - (b) The Owner shall ensure that no more than 200 cubic metres of ground woodwaste be stockpiled at the Landfill at any one time;
 - (c) Any stockpile of ground woodwaste shall be stored in an operating cell of the landfill site so that any leachate from the ground woodwaste drains into the landfill; and
 - (d) The use of the ground woodwaste as alternative cover shall be discontinued upon written direction from the District Manager if found to have a negative impact.
- 14.11 The Owner shall provide to the Director a Closure Plan at least two (2) years before the closure of Phase II/III of the landfill site.
- 14.12 The Owner shall ensure that:
 - (a) all white goods which contain refrigerants accepted at the Site, which have not been tagged by a licensed technician to verify that the equipment no longer contains refrigerants, are stored in an upright position and in such a manner to allow for the safe handling and removal from the Site of refrigerants as required by Ontario Regulation 189;

- (b) white goods which contain refrigerants received on-site shall either have the refrigerant removed prior to removal from the Site or shall be shipped off-Site only to facilities where the refrigerants can removed by a licensed technician in accordance with Ontario Regulation 189; and
- (c) a detailed log of all white goods which contain refrigerants received is maintained which includes the following information:
 - (i) date of the record;
 - (ii) types, quantities and source of white goods which contain refrigerants received;
 - (iii) destination of the white goods; or
 - (iv) the details on removal of refrigerants, if conducted on Site, and the quantities and destination of the refrigerants transferred from the Site.
- 14.13 Any propane cylinders shall be stored in a segregated area in a manner which prevents cylinders from being knocked over or cylinder valves from breaking.
- 14.14 Any tires shall be placed in a segregated area cleared of vegetation and other waste, in a pile no greater than 3 metres in height and 100 square metres in area.

15.0 Waste Transfer Station

- 15.1 The Waste Transfer Station shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- 15.2 Only waste electrical and electronic equipment, cardboard, scrap metal, blue-box recycling materials shall be accepted at the Waste Transfer Station,
 - (i) from the Town of St. Marys;
 - (ii) from householders responsible for those wastes; and
 - (iii) from small businesses where such wastes are considered unrelated to the operation of the business; or from small businesses where such waste qualifies for the small quantities exemption defined by Regulation 347 except where such waste is produced in small quantities on a regular basis (e.g. printing companies).
- 15.3 The maximum amount of all waste that may be accepted per day at the Waste Transfer Station is 25 tonnes.
- 15.4 The maximum storage capacity of all wastes at the Waste Transfer Station is 100 tonnes.
- 15.5 Any cardboard stored at the Waste Transfer Station shall be stored in a container that has a covering to protect the cardboard from precipitation.
- 15.6 Waste accepted at the Waste Transfer Station shall be stored in a safe and secure manner and shall be properly handled, packaged or contained so as not to pose any threat to the general public, Site personnel or the environment.
- 15.7 The Owner shall remove all waste and Recyclable Materials from the Waste Transfer Station at an interval not exceeding ninety (90) days with the exception of

- electronic waste which shall be removed before the container holding the electronic waste gets full.
- 15.8 No radioactive, pathological or biomedical wastes or contaminated radioactive, pathological or biomedical wastes shall be accepted at the Waste Transfer Station.
- 15.9 The Waste Transfer Station must be maintained in a secure manner, to prevent unauthorized persons from causing negative off-Site impacts.
- 15.10 All waste destined for diversion shall be segregated either into bins or in designated areas. All bins and designated waste storage areas shall be clearly labelled.
- 15.11 The waste electronic and electrical equipment diversion program shall be operated in accordance with Item 20 of Schedule "A", and in accordance with the following requirements:
 - (a) the Owner shall clearly communicate the hours of operation of the waste electronic and electrical equipment diversion program to the public to minimize the amount of waste that is not diverted from Landfill;
 - (b) the Owner may receive a maximum of one (1) cubic metre per day of waste electrical and electronic equipment;
 - (c) a maximum of five (5) cubic metres of waste electrical and electronic equipment may be stored at the Site;
 - (d) waste electrical and electronic equipment shall be stored in a secure manner for a maximum of six (6) months; and
 - (e) no disassembly, including manual disassembly, of waste electrical and electronic equipment is permitted, apart from the removal of visible batteries.

16.0 Municipal Hazardous or Special Waste (MHSW)

- 16.1 The MHSW Facility shall be operated in accordance with the application for a Waste Disposal Site submitted March 31, 2008 and supporting information identified in Schedule A.
- 16.2 The MHSW Facility may accept those wastes that are identified by the definition of MHSW.
- 16.3 The maximum amount of MHSW that may be accepted at the Site in any one day is one (1) tonne.
- 16.4 All MHSW shall be stored on Site in weather resistant, lockable, 20-foot standard storage containers.
- 16.5 The Maximum amount of MHSW that may be stored at the MHSW Facility is five (5) tonnes.
- 16.6 The Owner shall ensure that:
 - (a) the wastes are stored in a safe and secure manner;
 - (b) the operation of this facility does not interfere with any other activities associated with this Site; and
 - (c) the wastes are properly handled, packaged or contained so as not to pose any threat to the general public, Site personnel and the environment.

- 16.7 (a) Wastes that are collected and stored shall be in amounts which can be safely handled at the MHSW Facility. In the event that larger amounts are received than anticipated, the Owner shall have extra drums and lab-packed containers available on the premises for the storage of the additional waste collected; and
 - (b) When the MHSW Facility's capacity is reached, arrangements for the removal of waste shall be made as soon as possible, but in any event, within five (5) working days.
- 16.8 No storage facilities other than those approved under this ECA shall be used, and fixed storage facilities shall not be moved, replaced or altered without amendment to this ECA.
- 16.9 The storage facilities shall be clearly marked indicating the type and nature of the hazardous waste stored.
- 16.10 All points of access to the MHSW Facility shall be posted to warn that the area contains hazardous materials.
- 16.11 Smoking restrictions shall be adhered to and non-smoking signs posted as required by regulation.
- 16.12 The two 20-foot storage containers for MHSW shall be weather resistant, lockable, properly ventilated and shall be constructed and used in compliance with the Fire Code, any applicable municipal by-law and the Occupational Health and Safety of Ontario and its applicable Regulations.
- 16.13 The 20-foot storage container, shall be maintained under lock and key and access to these facilities shall be limited to trained Site personnel.
- 16.14 No PCB's, pathological waste, severely toxic waste or radioactive waste shall be accepted at the MHSW Facility.
- 16.15 Oil and oil-based paints which have been manufactured prior to 1972; or whose manufacturing date cannot be determined and may contain PCBs, shall be handled in the manner prescribed:
 - (a) the oil and oil-based paints shall not be mixed (bulked) with other paints prior to testing. Paints which are lab-packed are not considered to be mixed under this ECA.
 - (b) the oil and oil-based paints shall be tested for PCB content. The oil and oil-based paint is considered to be a PCB waste, if measured levels are equal to or greater than 50 parts per million.
 - (c) the oil and oil-based paints shall not be distributed for reuse if they have any measurable PCB content.
 - (d) if oil and oil-based paint is found to have PCBs at or above 50 ppm, it shall be forthwith reported to the District Manager and shall be managed in accordance with Ontario Regulation 362/92, Waste Management PCBs made under the Act, or removed from the Site to an approved PCB storage site in accordance with written instructions from the District Manager.

- 16.16 Except as specified in Condition 16.15, paints collected at the MHSW Facility may be returned or sold to the general public for reuse provided all transactions are recorded by invoice. Information on the type and volume of paint returned to the public through this Site shall be recorded in the report specified in Condition 22.1.
- 16.17 The Owner shall ensure that a Competent Person is on duty at all times during the operation of the MHSW Facility.
- 16.18 The local police and fire department shall be informed of the MHSW Facility and this ECA and shall be notified in writing of operating hours and any changes to scheduled operating hours prior to the changes being made.
- 16.19 Except as specified under Conditions 16.16, all waste collected shall be transported from the MHSW Facility by an approved waste management system and disposed to an approve waste disposal site certified to accept these types of wastes.
- 16.20 All containers which hold hazardous waste that have been collected at the MHSW depot at the Site shall be labelled that these waste are not subject to LDR treatment requirements in accordance with Section 81 of Regulation 347.

17.0 <u>Compost Operations</u>

- 17.1 The Compost Facility is approved for open windrow composting of a maximum of 300 tonnes per month of leaf and yard waste.
- 17.2 The Compost Facility shall be constructed and operated in accordance with the application for a Provisional Certificate of Approval for a Waste Disposal Site submitted March 31, 2008 and supporting information referenced as Item 10 in Schedule "A".
- 17.3 The Owner shall ensure that incoming waste is visually inspected by a Competent Person to ensure that the waste meets the requirements of this Certificate.

 Unacceptable waste shall be re-directed to Landfill; and
- 17.4 (a) Leaf and yard waste destined for composting shall be removed to the Compost Facility on a weekly basis or whenever the capacity of the designated storage area is reached, whichever occurs first. In the event that the leaf and yard waste becomes odourous, the waste shall be immediately diverted to the Landfill.
 - (b) At least once every year, the Owner shall take a representative sample of the incoming yard and leaf waste to ensure that the incoming waste meets the metals criteria listed in Schedule "B". Incoming waste which does not meet the metals criteria listed in Schedule "B" is considered unacceptable waste.
- 17.5 (a) Leaf and yard waste shall be incorporated into windrows within four (4) days of being mixed; and

- (b) Any waste that has exceeded the time restrictions in Conditions 17.5(a) shall be re-directed to the Landfill for immediate burial.
- 17.6 The Owner shall ensure that the following operating criteria are met, as a minimum:
 - (a) all waste receipt, processing, active composting and curing shall take place in the part of the landfill that is identified by Figure 1.1 that is identified by Item 10 of Schedule "A"
 - (b) windrows shall be arranged in a manner which permits equipment access to the composting and storage areas for efficient turning of the windrows and to allow access for emergency vehicles:
 - (c) windrows shall be constructed at bulk densities and heights which promote aerobic conditions;
 - (d) all waste being composted shall be held at a temperature of at least 55 °C for a minimum of fifteen (15) days cumulative, to ensure proper bacterial growth and pathogen inactivation;
 - (e) during composting, the temperature and moisture levels of the windrows shall be monitored and recorded daily during the pathogen inactivation period and a minimum of twice weekly during the remainder of the composting process;
 - (f) during the fifteen day pathogen inactivation period, the windrows shall be turned a minimum of five (5) times; and
 - (g) compost shall be cured for six (6) months after the requirements for pathogen inactivation have been satisfied. During the curing phase, windrows shall be turned at least once per month.
- 17.7 (a) Prior to being released from the Compost Facility for unrestricted use, compost shall be monitored for quality as follows:
 - (i) a representative composite sample shall be collected for every 1000 tonnes of compost produced;
 - (ii) samples shall be analysed for criteria listed in Schedule "B";
 - (iii) all production records shall be reviewed to ensure temperature and residency time requirements for pathogen inactivation have been met;
 - (b) Compost that met the temperature and residency time requirements for pathogen inactivation and the quality requirements listed in Schedule "B" of this ECA, is considered to be finished compost and may be transferred off Site for unrestricted use;
 - (c) Compost that meets the metals and foreign matter quality requirements listed in Schedule "B" of this ECA but did not achieve the pathogen inactivation time or temperature requirements, or did not meet the Schedule "B" pathogen quality requirements, may be returned to the composting process for re-processing. Alternatively, the compost may be used as alternate cover material; and
 - (d) Compost that can not meet the metal or foreign matter quality requirements listed in Schedule "B" of this ECA shall be considered Compost Waste and shall be re-directed to the Landfill for use as alternate cover material and/or burial.

- 17.8 (a) The Owner shall ensure that the area inside the containment berm surrounding the compost pile be graded to allow for a low-lying sump area that can used to collect leachate from the composting operation; and
 - (b) The collected leachate may be sprayed onto the landfill to enhance the daily cover; and
 - (c) If there is need to direct leachate from the composting operation to the stormwater detention Basin A or to a body of water, an application and approval to amend Municipal Sewage Certificate of Approval Number 3-1577-92-936 needs to be done.
- 17.9 There shall be no discharge of wastewater to a body of water from the Site unless allowed by an Approval under the OWRA.

18.0 Nuisance Control

- 18.1 (a) The Site shall be operated and maintained such that the vermin, vectors, birds, dust, litter, odour, noise and traffic do not create a nuisance.
 - (b) If at any time, problems such as vermin, vectors, birds, dust, litter, odours, noise or traffic, or other nuisances are generated at the Site resulting in complaints, the Owner shall take appropriate remedial ion to eliminate the cause of such problems. Appropriate measures may include temporary stoppage of all operations until the problem has been rectified and measures have been undertaken to prevent future occurrence.
- 18.2 A litter control program shall be established and maintained by the Owner near the face of the active cell of the Landfill, at the Compost Facility and at the property line. The litter control program shall include, but not be limited to, regular pick up of litter and use of snow fences around the active cell of the Landfill and Compost Facility as required.
- 18.3 (a) The Owner shall have in place procedures to prevent adverse odour impacts from the Composting Facility including, but not limited to:
 - (i) reducing the size of windrows to promote aeration;
 - (ii) identifying unfavourable meteorological conditions and limiting activities which can reasonably be expected to generate odours during times of unfavourable meteorological conditions; and
 - (b) Notwithstanding Condition 18.4, any odourous composting waste that does not respond to mitigative action within twelve (12) hours of action being taken will be re-directed to the Landfill for immediate burial.
- 18.4 The Owner shall operate and maintain the Site so that the maximum 10-minute average concentration of odour at the most impacted sensitive receptor, resulting from the operation of the Landfill and/or the Compost Facility, shall not be greater than 1.0 odour unit.

19.0 <u>Site Inspections and Maintenance</u>

- 19.1 The Owner shall ensure that all MHSW Facility storage facilities are inspected each day that the facility is in operation by a Competent Person for spills, leaks or hazardous conditions.
- 19.2 The Owner shall ensure that:
 - (a) visible portions of the Compost Facility pad are visually inspected on each operating day; and
 - (b) the pad is visually inspected, and appropriate maintenance performed, as the pad surface is uncovered during windrow turning and/or removal.
- 19.3 The Owner shall ensure that a Competent Person performs daily visual inspections of the Site to ensure security and cleanliness of the Site.
- 19.4 The Owner shall ensure that fire extinguishers are inspected monthly and recharged annually.
- 19.5 (a) The Owner shall develop and put in place a preventative maintenance program, in accordance with manufacturers' recommendations, for all on-site equipment associated with the processing and managing of waste and/or processed materials; and
 - (b) The preventative maintenance program shall consist of the following as a minimum:
 - (i) the program shall specifically stipulate the part of the equipment inspected for all process equipment on Site;
 - (ii) the frequency of the inspections required and carried out; and
 - (iii) the dates of any repairs conducted.
- 19.6 Any deficiencies noted during the inspection or maintenance activities, that might negatively impact the environment, shall be promptly corrected.

20.0 Environmental Emergency

- 20.1 Within thirty (30) days of the date of issue of this Notice, the Owner shall have in place an Environment Emergency Plan for the operations permitted under the ECA. The Environment Emergency Plan shall include, but is not necessarily limited to:
 - (a) the prevention of, preparedness for, response to and recovery from an environmental emergency;
 - (b) a list of contingency equipment and spill clean up materials available to Site personnel;
 - (c) names and telephone numbers of waste management companies available for emergency response; and
 - (d) a notification protocol, with names and telephone numbers of persons to be contacted, including:
 - i. Town of St. Marys personnel,
 - ii. the Ministry District Office;
 - iii. Spills Action Centre;
 - iv. Fire Department;
 - v. Police Department;

- vi. local Medical Officer of Health; and
- vii. Ministry of Labour.
- 20.2 The Owner shall take immediate measures to clean-up spills and other discharges of any wastes. Spill clean-up material shall be stored at the Site, in sealed drums or in an appropriate solid waste container, until such time as it is removed to a facility approved to receive such waste.
- 20.3 The Owner shall require a Competent Person to record all spills and upsets in the log book referred to in Condition 22 of the ECA. The information recorded in the log shall include:
 - (a) the nature of the spill or upset;
 - (b) the action taken for clean-up; and
 - (c) corrective action taken to prevent future occurrences.
- 20.4 The Owner shall require a Competent Person to immediately notify the Ministry's Spills Action Centre at (416) 325-3000 or 1-800-268-6060 of any reportable spills or upsets.
- 20.5 The Owner shall ensure that adequate fire-fighting and contingency spill clean-up equipment are available at the Site and that the Site personnel are familiar with the use of such equipment and its location(s) on the Site.
- 20.6 The Owner shall ensure that:
 - (a) the contingency equipment and materials outlined in the Environment Emergency Plan are in a good state of repair, fully operational and immediately available;
 - (b) all operating personnel are fully trained in the contingency equipment and materials' use and in the procedures to be employed in the event of an emergency;
 - (c) the Environment Emergency Plan is reviewed and updated on an annual basis as a minimum; and
 - (d) the local Fire Department and the District Manager are given a copy of the Environment Emergency Plan and any amendments that are made to it.
- 20.7 All Operators and employees of the Owner at the Site shall be Competent People.

21.0 Complaints

- 21.1 If the Owner receives complaints regarding the operation of the Site which are environmental in nature, or have caused, or are likely to cause, a negative impact to the environment or human health or safety, the Owner shall respond to these complaints according to the following procedure:
 - (a) The Owner shall record each complaint and the information recorded shall include:
 - (i) the date, time and nature of the complaint;
 - (ii) the name, address and telephone number of the complainant if provided;
 - (iii) the activities taking place on Site at the time of the complaint; and
 - (iv) meteorological conditions;
 - (b) The Owner, upon notification of the complaint shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and

(c) The Owner shall retain on-Site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the reoccurrence of similar incidents.

22.0 Record Keeping

- 22.1 (a) The Owner shall maintain daily written records for waste deposited at the Landfill and managed at the Waste Transfer Station for each day the Site is in operation. The record shall included, but not necessarily be limited to:
 - (i) the quantity of waste received for final disposal at the landfill;
 - (ii) the quantity of waste received at the Waste Transfer Facility.
 - (iii) the type and quantity of waste transferred from the Site for recycling and the destination of the waste diverted;
 - (iv) a record of activities undertaken that operating day (e.g. placement of cover material);
 - (v) a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service.
 - (b) The Owner shall establish a monthly summary of waste received at the MHSW Transfer Facility which shall include, but not necessarily be limited to:
 - (i) documentation of waste types and quantities;
 - (ii) the quantity of any paint given to the public
 - (iii) source of generation;
 - (iv) ultimate disposal sites;
 - (v) each incident where the capacity of the facility has been exceeded; and
 - (vi) spills, upsets and environmental or other problems encountered in operating the MHSW Transfer Facility.
 - (c) The Owner shall maintain the following records as a minimum for the Compost Facility:
 - (i) daily weather data including wind speeds and wind direction;
 - (ii) types and quantities of waste received;
 - (iii) date and time of windrow construction and ratio of windrow mixture;
 - (iv) windrow temperature and moisture readings as appropriate for each stage of processing;
 - (v) date windrow was broken down and began curing;
 - (vi) other activities carried out (windrow turning, moisture addition, combining windrows, sampling); and
 - (vii) laboratory reports of all analysis of feedstocks, mixtures, active and Cured Compost.
- 22.2 The Owner shall maintain written records of all inspections and maintenance activities undertaken in accordance with Conditions 19.1 to 19.6 inclusive. All records related to the inspection and preventative maintenance programs shall be available on Site for inspection by a Provincial Officer upon request.

- 22.3 The Owner shall maintain a written record, at the Site, of employee training required by Condition 20.7. The record shall include but not necessarily be limited to:
 - (a) date of training;
 - (b) name and signature of person who has been trained; and
 - (c) description of the training provided.

23.0 **Monitoring**

- 23.1 (a) The Owner shall ensure compliance with the RUP.
 - (b) The Owner shall determine compliance by retaining qualified professionals to monitor groundwater, surface water and leachate in accordance with Schedule "C";
 - (c) Sampling and analyses in accordance with Schedule "C", shall occur in the spring and fall of each year; and
 - (d) The monitoring program may be amended from time-to-time with the prior written consent of the District Manager.
- 23.2 The Owner shall ensure that all samples are collected using standard sampling methods. The sampling methods followed shall be referenced in the report required by Condition 25.1.
- 23.3 (a) All monitoring wells which form part of the monitoring program shall be protected from damage. Any groundwater monitoring wells that are damaged shall be repaired or replaced forthwith or properly abandoned in accordance with Ontario Regulation 903; and
 - (b) Any monitoring wells which are no longer required for monitoring, or which need to be closed due to operational changes on the Site, shall be property abandoned in accordance with Ontario Regulation 903.
- 23.4 In the event that the results of the monitoring program are such that an off-Site exceedance of the criteria set by the RUP and/or the PWQO has occurred as a result of the operation of the Site, the Owner shall notify the District Manager as soon as reasonably possible and specify the following:
 - (a) details of the off-site exceedance, confirmatory monitoring requirements and the potential off-site impacts to surface water and groundwater users;
 - (b) the extent and timing of contingency measures to be implemented;
 - (c) modifications, if any, which should be made to the monitoring program; and
 - (d) other mitigation measures, if any, which may be necessary to reduce or prevent off-site impacts.

24.0 General Provisions

24.1 Within one year of issue of this ECA, the Owner shall install a weigh scale at the Site to enable a tracking of the quantity of waste entering and leaving the Site.

- 24.2 Within ninety (90) days of issue date of this ECA, the Owner shall maintain a current Operations and Maintenance Manual for the landfill, the Waste Transfer Station, the MHSW Depot and the composting operation which is consistent with the ECA for the Landfill part of the Site for use by Site personnel which shall contain, but is not necessarily limited to the following:
 - (a) a Site plan, showing the location of key features and their dimensions at the Site;
 - (b) an outline of the responsibilities of personnel;
 - (c) personnel training requirements;
 - (d) proper receiving, handling, storage and recording procedures;
 - (e) procedures for handling white goods containing refrigerants; and an outline of the responsibilities of MHSW Facility personnel;
 - (f) operating procedures for the composting area including processing/mixing, windrow formation, turning schedules, parameters and criteria that have to be met;
 - (g) quality control sampling and testing protocol for the Site;
 - (h) contingency and emergency response procedures including health and safety provisions for workers and best management practices for the control of dust, litter and odour;
 - (i) Leachate management;
 - (j) Landfill gas management;
 - (k) Surface water/Storm water management;
 - (l) Inspections and monitoring; and
 - (m) Complaints procedure.
- 24.3 The Operations and Maintenance Manual referred to in Condition 24.2 shall be:
 - i) retained at the Site;
 - ii) kept up to date through periodic revisions; and
 - iii) be available for inspection by Ministry staff.

25.0 Annual Report

- 25.1 By March 31 of each year, The Owner shall prepare and submit to the District Manager an annual report which summarizes Site operations for the previous calendar year. The annual report shall include the following:
 - (a) an assessment of the egress of contaminants into groundwater and surface water, as determined by sampling and analysis conducted within the previous calendar year;
 - (b) an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plans;
 - (c) a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;
 - (d) plans showing the existing contours of the Landfill; areas of landfilling operation during the reporting period; areas of intended operation during the next reporting period; areas of excavation during the reporting period; the progress of final cover, vegetative cover, and any intermediate cover application; previously existing Site facilities; facilities installed during the reporting period; and Site preparations and facilities planned for installation during the next reporting period;

- (e) graphs showing trends through time for key indicator parameters including chloride, iron and total phosphorous for all surface water monitoring stations and Total Suspended Solids for the discharge points at the Storm Water Management Ponds, SP4A-94 and SP2B-94.
- (f) provide information on surface water station SP2-93;
- (g) calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Landfill during the reporting period and a calculation of the total volume of Landfill capacity used during the reporting period;
- (h) a calculation of the remaining capacity of the Landfill and an estimate of the remaining Landfill life;
- (i) analytical results from testing of alternative cover material;
- (j) report on sediment build up in storm water ponds Basin A and Basin B;
- (k) once the weigh scale is installed at the Site, a summary of the total quantity (tonnes) of waste received at the Site by waste management activity;
- (1) a summary of the quantity of waste diverted from final disposal to recycling or reuse;
- (m) a summary of the quantity of MHSW collected, by waste class code and the final destination of each waste type;
- (n) a summary of the amount of leaf and yard waste received at the Compost Facility and the amount of finished compost transferred from the Site;
- (o) a summary of analytical results of samples taken from the finished compost;
- (n) a summary of any significant problems encountered during composting or curing;
- (p) a summary of any complaints received from any of the waste management activities undertaken at the Site and the responses made;
- (q) a discussion of any environmental and operational problems that could negatively impact the environment encountered during the operation of the Site and during the Site inspections and any mitigative actions taken;
- (r) any recommendations to minimize environmental impacts from the operation of the Site and to improve Site operations and monitoring programs in this regard; and
- (s) a summary statement as to compliance with all Conditions of this ECA and with the inspection and reporting requirements of the Conditions herein.

26.0 Closure Plan

- 26.1 At least two (2) years prior to the anticipated date of closure of the Landfill, the Owner shall submit to the Director for approval, a detailed closure plan pertaining to the termination of landfilling operations at this Site, post-closure inspection, maintenance and monitoring, and end use. The plan shall include the following:
 - (a) a plan showing Site appearance after closure;
 - (b) a description of the proposed end use of the Site;
 - (c) a descriptions of the procedures for closure of the Landfill, including:
 - (i) advance notification of the public of the Landfill closure;
 - (ii) posting of a sign at the Site entrance indicating the Landfill is closed and identifying any alternative waste disposal arrangements;
 - (iii) completion, inspection and maintenance of the final cover and landscaping;
 - (iv) Site security;
 - (v) removal of unnecessary Landfill-related structures, buildings and facilities; and

- (vi) final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
- (d) a schedule indicating the time-period for implementing Conditions 26.1(c)(i) to 26.1(c)(vi) inclusive:
- (e) descriptions of the procedures for post-closure care of the Landfill, including:
 - (i) operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and Landfill gas;
 - (ii) record keeping and reporting; and
 - (iii) complaint contact and response procedures;
- (f) an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas; and
- (g) an updated estimate of the contaminating life span of the Landfill, based on the results of the monitoring programs to date.
- 26.2 (a) Four (4) months prior to the permanent closure of the MHSW Transfer Facility, the Waste Transfer Station and/or Compost Facility, the Owner shall submit to the District Manager written notification of the decision to cease the MHSW collection program, the composting activities and/or the Waste Transfer Station. The written notification shall include a closure plan consisting of:
 - (i) a plan showing Site appearance after closure;
 - (ii) a description of the procedures to be taken for closure of the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility; and
 - (iii) a schedule indicating the time-period for implementing closure activities; and
 - (b) Within ten (10) days after closure of the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility, the Owner shall inform the Director, in writing, that the Waste Transfer Station, the MHSW Transfer Facility and/or the Compost Facility is/are closed and requesting that this ECA be amended accordingly.

27.0 Interim Capacity

- 27. (a) The amount of waste disposed of at the Landfill Site between October 1, 2021 and September 30, 2022 shall not exceed 13,000 cubic metres including daily cover.
 - (b) This waste shall be contained within cells 5, 6, 7 and 8 of Phase II/III.
 - (c) No waste shall be disposed of at the Landfill Site after September 30, 2022 unless additional interim capacity is approved by the Director.
- 28. By July 31, 2022, the Owner shall submit to the Director an ECA application, should the Site require further approval of interim capacity. The application shall include the following supporting information:
 - (a) Updated proposal of interim contours.
 - (b) 2021 Annual Operations and Monitoring Report.

SCHEDULE "A"

This Schedule "A" forms part of this ECA.

- 1. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February 4, 1982.
- 2. Application for a Provisional Certificate of Approval for a Waste Disposal Site, dated February March 31, 2008 and signed by Kevin Luckhardt.
- 3. Hydrogeologic Investigation, St. Marys Landfill Site, Report by Conestoga-Rovers & Associates Limited, dated November 1982.
- 4. Plans prepared by Conestoga-Rovers & Associates Limited, Project No. 0645, as follows:

TITLE	PLAN NO.	DATE
Existing Conditions	1	November 1982
Proposed bottom Contours	2	November 1982
Proposed Final Contours	3	November 1982
Cross-Section	4	November 1982
Site Development Plan		
Waste Disposal Area 1	5	November 1982
Leachate Collection System	6	November 1982
Surface Water Drainage	7	November 1982

- 5. Letter dated January 27, 1983 from the Ministry of the Environment Waste Management Approvals Unit to the Town of St. Marys.
- 6. Letter dated March 21, 1983 from Conestoga-Rovers & Associates Limited to the Ministry of the Environment, Waste Management Approvals Unit.
- 7. Drawing of Proposed Berm Extension, St. Marys Landfill Site, prepared by Conestoga-Rovers and Associates Limited, dated march 25, 1983.
- 8. Design and Operation Report Phase II/III prepared by Conestoga Rovers and Associates Limited, dated November 1992.
- 9. Addendum: Design and Operations Report Update prepared by Conestoga Rovers and Associates dated April 2009
- 10. Addendum: Design and Operations Report, Leaf and Yard Composting Operations, St. Marys Landfill Site, prepared by Conestoga Rovers and Associates dated October 2009.
- 11. Letter dated January 8, 2010 with attachments from James R. Yardley, P.Eng. of Conestoga Rovers and Associates, addressed to Jim Chisholm of the Ministry.

- 12. Application for an Environmental Compliance Approval for a Waste Disposal Site from The Corporation of the Town of St. Marys, received on June 14, 2013, including supporting documentation submitted therewith.
- 13. Letter dated July 22, 2013 from The Corporation of the Town of St. Marys including the following information:
 - (a) Signature dated June 27, 2013 on page 7 of the application form;
 - (b) Revised pages 16 and 27 of the application form;
 - (c) Copy of public notification letter and list of recipients;
 - (d) Site address confirmation; and
 - (e) Updated Design and Operations Plan.
- 14. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Chad Papple, Director of Public Works, The Corporation of the Town of St. Marys, received on July 2, 2015, including the following supporting information:
 - (a) Proposed Cell Staging Plan prepared by R.J. Burnside & Associates Limited, Project No. 300032339
 - (b) 2014 Annual Operations and Monitoring Report prepared by R.J. Burnside & Associates Limited, Project No. 300032339
- 15. Letter from The Corporation of the Town of St. Marys Public Works Department to Dale Gable, Ministry of the Environment and Climate Change signed by Dave Blake, C.E.T. and dated July 25, 2016 including all attachments.
- 16. Application for approval dated July 18, 2017 including all supporting documents submitted (2016 AMR, et al).
- 17. Letter from The Corporation of the Town of St. Marys Public Works Department to Dale Gable, Ministry of the Environment signed by Dave Blake, C.E.T. and dated June 20, 2018 including all attachments.
- 18. Email from Matt Ash, C.E.T., GM BluePlan Engineering Limited, dated September 13, 2018, RE: Approval of interim capacity for St. Marys Landfill Site (MECP Ref no. 5354-B2BLLT).
- 19. Letter dated July 22, 2019 from The Corporation of the Town of St. Marys Public Works Department addressed to Director, Client Services and Permissions Branch, Ministry of the Environment signed by Dave Blake, C.E.T., including all attachments.
- 20. Email from Dave Blake, The Corporation of the Town of St. Marys, dated October 4, 2019, Reclarification on filling in cell 5 of Phase II/III, and working slopes.
- 21. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Dave Blake, Environmental Services Supervisor, The Corporation of the Town of St. Marys, Signed on July 29, 2020, including the following supporting information:
 - (a) Annual Operations & Monitoring Report (2019), St. Mary's Landfill Site, MOECC

Certificate of Approval No. A150203. Prepared by GM Blue Plan Engineering, Report dated and signed March 2020 and the pdf published electronically on 03/24/2020 8:27 AM.

- 22. Application for an Environmental Compliance Approval for Landfill amendment Interim Capacity approval, by Dave Blake, Environmental Services Supervisor, The Corporation of the Town of St. Marys, Signed on July 28, 2021, including the following supporting information:
 - (a) Annual Operations & Monitoring Report (2020), St. Mary's Landfill Site, MOECC Certificate of Approval No. A150203. Prepared by GM Blue Plan Engineering, March 2021.

SCHEDULE "B"

This Schedule "B" forms part of this ECA.

Parameter	Maximum concentration
Metals	
arsenic	13 ppm
cadmium	3 ppm
chromium	210 ppm
cobalt	34 ppm
copper	100 ppm
lead	150 ppm
mercury	0.8 ppm
molybdenum	5 ppm
nickel	62 ppm
selenium	2 ppm
zinc	500 ppm
Foreign material plastic particles greater than 3 mm in any direction non-biodegradable material greater than 3 mm direction	
Pathogens fecal coliforms a dry weight basis salmonellae weight basis	<1000 MPN*/g of total solids calculated on <3 MPN*/4g total solids calculated on a dry

^{*} most probable number

SCHEDULE "C"

This Schedule "C" forms part of this ECA. ST. MARYS LANDFILL MONITORING PROGRAM

	Parameters						l Chemi			tional	Metals		VO Cs	
				\vdash				,			\vdash			
	Mo nito ring Locations	Hydraulic Monitoring	pH, conductivity, temperature	chlo tid e, hardness, phenols.	200	BOD _{3,} ammonia	tu bid #y, TDS, suspended solids, total phosphorous	COD, chloride, phenols, nitrate, phosphorous, TKN, TSS	alkalm#y, sulphate	boron, iron, manganese, sodium, BTEX	calcium, magnesium	ж әи в Зивиг 'п ол;	aluminum, banium, berylhum, bismuth, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel potassium, silver, sodium, strontium, tungsten, vanadium, zinc	EPA 624 VOCs
	OW2-84	×	×	×	Х				×	×	×			
1	OW3-84	×	×	×	Х						×			
1	OW4-84	х	×	×	Х						×			
l	OW5-84	×	х	Х	Х						Х			
Groundvater Wells	OW6-84	Х	×	×	Х						×			
[≋ੌ	OW7-91	Х	×	×	×						×			
<u> </u>	OW8 A -91	Х	×	×	Χ						Х			
Ιŧ	OW8B-91 OW9 A-91	×	×	×	×						×			
12g	OW9B-91	×	×	×	X						×	\vdash		
∰	0 W15-91	×	×	×	X				×	×	×			
Įĝ	O W21-91	×	×	×	×				×	×	×			
હ	0 W25-91	×	×	×	x					_^	×			
1	O W32-96	×	×	×	X				×	×	×			
1	O W33-96	×	×	×	×					-	×			
1	O W34-96	×	×	×	X				×	×	×	Н		
1	OW32A-02	×	×	X	Х				×	×	×			
Residential Wells	Riordan (#3)	Х	×	×	Х						×			
sident: Wells	Hall (#25)	×	×	×	×						Х			
\$ \$	Riordan Farm (#26)	×	×	×	Х						Х			
آگا.	He ard (#27)	×	×	×	×						Х			
<u> </u>	McCurdy (#24)	х	×	×	Х						Х			
	SP 1-93 (up stream)	×	×	Х		Х	X				×	×		
123	SP2-93 (midstream)	×	×	Х		×	Х				×	X		
Suface Water	SP3-93 (downstream)	х	×	×		×	Х				×			
[R	SP1B-94 (Basin Binlet)	х	×	Х		×	Х				×	×		
lã.	SP2B-94 (Basin B outlet)	×	×	Х	<u> </u>	×	Х				×	Х		
3	SP3A-94 (Basin Ainlet)	х	×	Х	<u> </u>	×	X				×	X		
l _o	SP 4A-94 (Basin A outlet)	×	×	×	<u> </u>	×	Х				×	X		
	SP5A-94 (Basin Ainlet)	×	×	Х	<u> </u>	×	Х				×	X		
ate is	M H1 (Phase I)	Х				×		×	×		×	×	×	×
Leachate Wells	MH3(Phase II/III)	Х				×		×	×		×	×	×	×
H	All Manholes	Х												

The reasons for the imposition of these terms and conditions are as follows:

The reason for Condition 1.1 is to clarify that the previously issued Provisional Certificate of Approval No. A150203 issued on August 4, 1980, and any subsequent Notices of amendment, are no longer in effect and has been replaced and superseded by the Terms and Conditions stated in this ECA.

The reason for Conditions 2.1, 2.2, 5.1, 5.2, 5.3, 6.1, 6.2, 10.2, 10.3 15.1, 15,2, 16.2, 16.15, 16.16. 16.17, 16.19, 16.20, 17.6, 17.8, and 17.9 is to clarify the legal rights and responsibilities of the Owner under this ECA.

The reason for Conditions 3.1, 3.2, 14.1, 15.1, 16.1, and 17.2 is to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

The reason for Conditions 4.1, 4.2, 4.3 and 4.4 is to clarify how to interpret this ECA in relation to the application and supporting documentation submitted by the Owner.

The reason for Condition 7.1 is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval.

The reason for Condition 7.2 is to restrict potential transfer or encumbrance of the Site without the approval of the Director. Any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this ECA.

The reason for Condition 7.3 is to ensure that subsequent owners of the Site are informed of the terms and conditions of this ECA. This also applies to all supporting documentation listed in Schedule "A".

Conditions 8.1, 8.2 and 8.3 are included, pursuant to subsection 197(1) of the Act, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.

The reason for Condition 9.1 is to ensure that appropriate Ministry staff have ready access to the Site for inspection of the Site and its facilities, equipment, practices and operations required by the conditions in this ECA. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act and OWRA.

The reason for Conditions 10.1 to 10.4 inclusive is to ensure the availability of records and drawings for inspection and information purposes.

The reason for Condition 11.1 is to specify the approved areas from which waste may be accepted at the Site.

The reason for Conditions 12.1, 12.2 and 12.3 is to specify the hours of operation for the Site and a mechanism for amendment of the hours of operation, as required.

The reason for Conditions 13.1, 12.4 and 15.9 is to ensure that the Site is secure when unattended to prevent vandalism or theft.

The reason for Conditions 13.2, 13.3, 13.4, 13.5 and 14.12 is to ensure the safety of the public and the protection of the environment.

The reason for Conditions 13.6 and 16.18 is to ensure that emergency responders and the public have the necessary contact information in the event of an emergency or complaint.

The reason for Condition 14.1, 14.2, 14.3 and 14.14 is to specify the types and quantities of waste that may be accepted for disposal and the placement of the waste at the Site.

The reason for Conditions 14.4, 14.5, 14.6 and 10.7 is to define the maximum amount of waste, including daily cover that is allowed at the landfill site.

The reason for Conditions 14.8, 14.9 and 14.10 is to specify the requirements for use of alternative cover material at the Site.

The reason for Condition 14.11 is to ensure that daily and intermediate cover is used to control potential nuisance effects, to facilitate vehicle access, and to ensure an acceptable appearance is maintained. The proper closure of a landfill requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the Site and ensures that waste is not filled beyond approved limits.

Conditions 14.13, 14.14, 15.4, 15.5, 15.6, 15.7, 15.8, 15.10, 15.11, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10 16.11, 16.12, 16.13, and 16.14 is included to ensure that waste storage is done in a manner, quantity and/or duration which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Condition 16.19 is to ensure that waste is transported to and from the Site in accordance with Regulation 347.

The reason for Condition 16.20 is to alert receiving waste disposal sites that the listed and/or characteristic waste is exempt from treatment requirements.

The reason for Conditions 14.3, 15.3, 16.3, 17.1 and 15.11(b) is to ensure that the types and quantities of waste received at the Site are in accordance with that approved under this ECA.

The reason for Condition 17.3 is to ensure that only waste approved under this ECA are received at the Site.

The reason for Conditions 17.4, 17.5, 17.6, 18.1, 18.2, 18.3, and 18.4 is to ensure that the Site is operated in a manner which does not result in a nuisance or a hazard to the health and safety of the environment or people.

The reason for Conditions 19.1, 19.2, 19.3, 19.4, 19.5 and 19.6 is to ensure that all equipment and facilities are maintained in good working order.

The reason for Conditions 20.1 to 20.6 inclusive is to ensure that the Owner is prepared and properly equipment to take action in the event of a spill, fire or other operation upset.

The reason for Condition 21.1 is to ensure that complaints are properly and quickly resolved and that complaints and follow-up actions have been documented.

The reason for Conditions 22.1, 22.2 and 22.3 is to ensure that detailed records of Site operations are kept for inspection and information purposes.

The reason for Condition 20.7 is to ensure that the Site is only operated in the presence of trained personnel.

The reason for Condition 23.1 is to demonstrate that the landfill is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.

The reason for Condition 23.2 is to ensure that samples are collected using established sampling protocol.

The reason for Condition 23.3 is to protect the groundwater.

The reason for Condition 23.4 is to notify the Ministry of off-site groundwater contamination so that appropriate mitigative actions can be taken.

The reason for Condition 24.1 is to provide the Site with the needed technology to be able to track the amount of waste entering and leaving the Site.

The reasons for Conditions 24.2 and 24.3 is to ensure that the Operations and Maintenance Manuals are kept current and reflects actual Site practices and procedures and are current and available for inspection by Ministry staff.

The reason for Condition 25.1 is to ensure a regular review of site development, operations and monitoring data and that the review is documented and any possible improvements to Site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing Site activities and for determining the effectiveness of Site design.

The reason for Conditions 26.1, 26.2 and 14.11 is to ensure that the Site is closed in accordance with MECP standards and to protect the health and safety of the environment.

The reason for Condition 27 is to allow for approval of extending interim capacity for the Landfill Site, while the Town is waiting for an Environmental Assessment approval for extending landfilling operations beyond existing capacity.

The reason for Condition 28 is to ensure that sufficient time is given to the Ministry to process the application, in the event that the Town of St. Marys needs to secure the following year's interim capacity.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A150203 issued on November 16, 2020

In accordance with Section 139 of the *Environmental Protection Act*, you may by written notice served upon me and the Ontario Land Tribunal within 15 days after receipt of this notice, require a hearing by the Tribunal. Section 142 of the *Environmental Protection Act* provides that the notice requiring the hearing ("the Notice") shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the *Environmental Protection Act*, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

Registrar*
Ontario Land Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5
OLT.Registrar@ontario.ca

and

The Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Ontario Land Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349 or 1 (866) 448-2248, or www.oltt.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the *Environmental Protection Act*.

DATED AT TORONTO this 10th day of January, 2022

Most

Mohsen Keyvani, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

CM/

c: District Manager, MECP London - District

A. W. Bringleson CET, GM BluePlan Engineering Ltd.

APPENDIX B: MECP WELL RECORDS

(/.....Licence Number.....

MINISTRY OF THE ENVIRONMENT The Ontario Water Resources Act

RECOR

500 2038 50001 2. CHECK OCRRECT BOX WHERE APPLICABLE TOWNSHIP, BOROUGH, CITY, TOW Thames Blanchard .R.#3 St. Marys Onyario. 1042 MAR 20, 1975 51 787240 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET GENERAL DESCRIPTION MOST GENERAL COLOUR COMMON MATERIAL 0 13 Brown Clay 13 80 Clay & Stones Grey 160 80 Limestone Grey 0013603 11 0080295/12 01602/5111 11111 31 10 14 15 54 65 7 32 CASING & OPEN HOLE RECORD 51 41 WATER RECORD DEPTH TER FOUND KIND OF WATER WALL THICKNESS INCHES MATERIAL MATERIAL AND TYPE DEPTH TO TO! OF SCREEN FROM то 10-13 FRESH 3 SULPHUR 1 X STEEL **U103** 2 SALTY 4 MINERAL **068** 2 GALVANIZE
3 CONCRETE 188 0 **PLUGGING & SEALING RECORD** 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 61 OPEN HOLE DEPTH SET AT - FEET J.517-18 1 STEEL MATERIAL AND TYPE **160** 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 68 GALVANIZED CONCRETE 1 | FRESH 3 | SULPHUR
2 | SALTY 4 | MINERAL 27-30 18-21 22-25 I STEEL GALVANIZED 30-33 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 3 CONCRETE LOCATION OF WELL IPING TEST METHOD 0 Q. 0005 1 T PUMP 2 | BAILER IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. PUMPING PECOVERY WATER LEVEL END OF PUMPING 22-24 WATER LEVELS DURING PUMPING TEST 32-34 29-31 110 () 96 110 FEET Follow rd. out of St. Marys past past St. Harys Cement plant to top 130 of hill turn right 2nd place on left RECOMMENDED RECOMMENDED side. FUMP 130 ☐ SHALLOW FDEEP FEET GPM./FT. SPECIFIC CAPACITY 000 5 ABANDONED, INSUFFICIENT SUPPLY WATER SUPPLY FINAL 2 OBSERVATION WELL 6 ABANDONED, POOR QUALITY **STATUS** 3 TEST HOLE
4 RECHARGE WELL 7 UNFINISHED OF WELL 1 DOMESTIC 5 COMMERCIAL 2 STOCK
3 RRIGATION 6 MUNICIPAL
7 PUBLIC SUP WATER USE D 8 COOLING OR AIR CONDITIONING 4 | INDUSTRIAL 9 | NOT USED ☐ OTHER CABLE TOOL 6 BORING METHOD ROTARY (CONVENTIONAL) 7 DIAMOND 8 🗌 JETTING 3 ☐ 4 ☐ ROTARY (REVERSE) 9 DRIVING DRILLING 5 AIR PERCUSSION DRILLERS REMARKS ONLY Hadco Well Drilling & Digging Ltd. 2519 USE 26,774 P.O.Box 730 Elmira Ontario. LICENCE NUMBER R.L. Franklin OFFICE UBMISSION DATE **CSS.38** SIGNATURE OF COM WΙ 6 Dec vr. 73 FORM 7 MINISTRY OF THE ENVIRONMENT COPY

The Ontario Water Resources Act 40P 29 WATER WELL RECOR 5003388 50601 1. PRINT ONLY IN SPACES PROVIDED 11 2. CHECK 🗵 CORRECT BOX WHERE APPLICABLE ON BLOCK TRACT SURVEY ETC. South Boundry TOWNSHIP, BOROUGH COUNTY OR DISTRICT ST. MARYS Rlancha rd VILLIAGE. 87 DAY _ 26 MO 10 Ont. Marys, 1063 86770 21 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET GENERAL DESCRIPTION FROM MOST COMMON MATERIAL OTHER MATERIALS GENERAL COLOUR 1 0 1 5 topseil black sand clay brown 119 sand and stones grey clay 119 171 limestone grey 31 32 CASING & OPEN HOLE RECORD SCREEN 51 WATER RECORD 41 DEPTH KIND OF WATER то WATER FOUND AT - FEET FROM 3 □ SULPHUR 4 □ MINERALS 6 □ GAS FRESH 2 SALTY 0 121 188 5 PLUGGING & SEALING RECORD 171 61 I T FRESH MATERIAL AND TYPE (CEMENT GROUT LEAD PACKER, ETC.) DEPTH SET AT . FEET Z SALTY 20-Z 3 □SULPHUR 4 □ MINERALS 6 □ GAS FRESH 171 121 22.25 3 SULPHUR
4 MINERALS
6 GAS 1 | FRESH SALTY 30-33 I 🗆 FRESH LOCATION OF WELL IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. 1 D PUMP 2 🛣 BAILER 1 PUMPING WATER LEVEL END OF PUMPING WATER LEVELS DURING STATIC LEVEL RECOVERY NOKTH MINUTES 22-24 147 147. 147. STMAKYS 141 IF FLOWING CLEAR MENDED RECOMMENDED PUMP TYPE 165 FEET RATE ☐ SHALLOW 8 ABANDONED, INSUFFICIENT SUPPLY WATER SUPPLY
OBSERVATION WELL FINAL ABANDONED, POOR QUALITY UNFINISHED STATUS TEST HOLE RECHARGE WELL 9 DEWATERING OF WELL 5 COMMERCIAL DOMESTIC STOCK ☐ MUNICIPAL
☐ PUBLIC SUPPLY WATER IRRIGATION COOLING OR AIR CONDITIONING

NOT USED 4 🔲 INDUSTRIAL USE ☐ OTHER NOTHIGHWAY 6 ☐ BORING . □ CABLE TOOL DIAMOND METHOD 2 ROTARY (CONVENTIONAL)
3 ROTARY (REVERSE) 14419 . D JETTING OF DRIVING 4 | ROTARY (AIR)
5 | AIR PERCUSSION CONSTRUCTION OTHER DIGGING WELL CONTRACTOR DATA SOURCE NOV 0 4 1987 Mervin Junes

WELL TECHNICIAN

26 No. 10

USE ONLY HSPECTOR CSS.S8 FORM NO. 0506 (11/86) FORM S

R,r. 3, Thorndale, Ont:

Murray S. Jones

8	Ministry of the Environme	30 ent
Ontario		1. PRINT ONLY IN S

The Ontario Water Resources Act

RECOR VATER WEL

5003434 PACES PROVIDED 2. CHECK X CORRECT BOX WHERE APPLICABLE PT.AN25-27 18 COUNTY OR DISTRICT 295 THAMES WOWAR D DATE COMPLETED YR.88 Ontario NOM 2VO DAY 15 1060 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET GENERAL DESCRIPTION MOST COMMON MATERIAL OTHER MATERIALS FROM TO GENERAL COLOUR 0 1 Topsoil Black 4 Stones Clay Brown 4 93 Sand and Stones Grey Clay 185 93 Limestone Grey 32 SIZE(S) OF CASING & OPEN HOLE RECORD SCREEN 51 WATER RECORD 41 DEPTH WATER FOUND AT - FEET KIND OF WATER MATERIAL AND TYPE MATERIAL то FRESH 3 □ SULPHUR 4 □ MINERALS 6 □ GAS STEEL
2 GALVANIZED
3 CONCRETE
4 OPEN HOLE
5 PLASTIC 185 PLUGGING & SEALING RECORD 188 0 94 1 | FRESH 61 5 FEET 20. DEPTH SET AT MATERIAL AND TYPE 1 STEEL 2 GALVANIZED 3 SULPHUR
4 MINERALS
6 GAS FRESH 185 94 4 OPEN HOLE 5 PLASTIC 5 3 □ SULPHUR 4 □ MINERALS 6 □ GAS 1 🗌 FRESH 22.25 Z SALTY 30-33 80 26-29 CONCRETE
OPEN HOLE
PLASTIC 1 | FRESH Z | SALTY LOCATION OF WELL 71 IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE INDICATE NORTH BY ARROW. 1 🗌 PUMP 2 X BAILER WATER LEVEL END OF PUMPING PUMPING PUMPING RECOVERY WATER LEVELS DURING WATLR ST. ST. MARKS MINUTES 60 MINUTES 回 132 56 FEET 56 FEET IF FLOWING FEET TECOMMENDED PUMPING
FEET RATE 1 CLOUDY RECOMMENDED SETTING 180 ☐ SHALLOW T DEEP 8 🔲 ABANDONED, INSUFFICIENT SUPPLY WATER SUPPLY **FINAL** ABANDONED POOR QUALITY
 UNFINISHED OBSERVATION WELL **STATUS** TEST HOLE OF WELL RECHARGE WELL 9 DEWATERING DOMESTIC S COMMERCIAL :君 MUNICIPAL STOCK WATER PUBLIC SUPPLY 1 IRRIGATION #7 Hyway ■ ☐ COOLING OR AIR CONDITIONING INDUSTRIAL USE 9 🗌 NOT USED ☐ OTHER 6 BORING
7 DIAMOND ROTARY (CONVENTIONAL)

ROTARY (PEVENO METHOD 27648 ■ JETTING 4 | ROTARY (AIR)

5 | AIR PERCUSSION CONSTRUCTION OTHER DIGGING DRILLERS REMARKS 3009 WELL CONTRACTOR LICENCE NUMBER DATA SOURCE JUN 22 1988 Mervin Jones 3009 DATE OF INSPECTION USE R. #3 Thorndale, Ontario WELL TECHNICIAN REMARKS OFFICE T 0068 CSS.33

488nY

FORM NO. 0506 (11/86) FORM 9

MO. 6

don

MINISTRY OF THE ENVIRONMENT COPY

The Ontario Water Resources Act

WATER WELL RECORD

Ontario		SPACES PROVIDED RECT BOX WHERE APPLICABLE	500431	9 NUNICIP 100 L	R
COUNTY OR DISTRICT Perth		TOWNSHIP, BOROUGH CITY, TOWN, VILLAGE Rlanghard		Thames Rive	
		R.3, St.Marys		NAX 1c6 DAY	<u> </u>
1 2	M 10 12	HING RC.	1 1 1 1 1 1	RC BASIN CODE 11	111111
	L. MOST	OG OF OVERBURDEN AND BEDRO	OCK MATERIALS		DEPTH - FEET
GENERAL COLOUR	COMMON MATERIAL	OTHER MATERIALS		GENERAL DESCRIPTION	FROM TO
grey grey	clay limestone	sand and stones			94 185
				· · · · · · · · · · · · · · · · · · ·	
31					
3 2 10	TER RECORD	51 CASING & OPEN HOLE	RECORD	SIZE (5) OF OPENING 31-33 DIA	75 METER 34-38 LENGTH 59-
WATER FOUND AT - FEET	KIND OF WATER	INSIDE WALL THICKNESS	DEPTH - FEET	MATERIAL AND TYPE	INCHES FE
185 2 0	SALTY 4 MINERALS 6 GAS	10-11 1 STEEL 12 2 GALVANIZED 3 CONCRETE	13-16	σ	FEET
2 0	FRESH 3 SULPHUR 4 MINERALS GAS 3 C 24	5 4 OPEN HOLE 5 PLASTIC 19 17-18 1 OSTEEL	0 95	DEPTH SET AT - FEET MATERIAL A	CONTRACT CROWN
2 0	FRESH 3 SULPHUR 4 MINERALS SALTY 6 GAS FRESH 3 SULPHUR 29	2 GALVANIZED 3 GCONCRETE 4 GOPEN HOLE 5 DPLASTIC	95 185	FROM TO 10-13 14-17	LEAU PALKEN, ETC
2 🗆	SALTY 6 GAS	24-25 1 OSTEEL 2 OGALVANIZED 3 OCONCRETE	27-30	18-21 22-25 26-29 30-33 80	
	SALTY 6 GAS	4 DOPEN HOLE 5 DPLASTIC			
71 D PUMP	2 Nailer	8 GPM 15-16 17-18 HOURS MINS	IN DIAG	LOCATION OF WE	
STATIC LEVEL	PUMPING 22-24 15 MINUTES		LOT LIN	PAM BELOW SHOW DISTANCES OF WELL 1740 WAT THE ROLL T	NORTH
19-21 112 FEET	155 155 155 38-41 PUMP INTAKE	ET 155 EET 155 FEET 155 FEET		.11 🛦	St. Marys
GIVE RATE	GPM	FEET 1 CLEAR 2 CLOUDY	$\rho_{\rm o}$	1760 WAT	EK > - >
RECOMMENDED PUT	PUMP	D 43-45 RECOMMENDED 46-49 PUMPING RATE 8 GPM	re	rin raks	
	54 WATER SUPPLY	S ABANDONED INSUFFICIENT SUPPLY			
FINAL STATUS OF WELL	2 OBSERVATION WE 3 TEST HOLE 4 RECHARGE WELL	LL 6 ABANDONED POOR QUALITY 7 UNFINISHED	-	CONS	
	5-56 1 35 DOMESTIC 2 STOCK	DEWATERING COMMERCIAL MUNICIPAL		23	
WATER USE	3 ☐ IRRIGATION 4 ☐ INDUSTRIAL	PUBLIC SUPPLY COOLING OR AIR CONDITIONING			
	OTHER	9 NOT USED		NOT HIGHWAY	
METHOD OF CONSTRUCTION	2 % ROTARY (CONVEN	TIONAL) 7 DIAMOND			4 40500
	5 AIR PERCUSSION	D DIGGING DOTHER	DRILLERS REMARKS		146532
Mervin	Jones Drilling	LTD WELL CONTRACTOR'S LICENCE NUMBER 3009	DATA SOURCE DATE OF INSPECTI		6 2 7 1996
R.R.3,	Thorndale, Ont		O DATE OF INSPECTI	ON INSPECTOR	
Nurra	LY S. Jones TECHNICIAN/CONTRACTOR	WELL TECHNICIAN'S LICENCE NUMBER T0068	O REMARKS	·	CSS.ES
O SIGNATURE OF	1 O T	Toomission Dails	<u> </u>		

	Ministry of Well Tag Number (Place	well Record
(W) Ontario	the Environment	Regulation 903 Ontario Water Resources Act
Instructions for Complet	11 -	page of
 All Sections must be continued. 	impleted in full to avoid delays in processing	nent legal document. Please retain for future reference. Further instructions and explanations are available on the back of this form.
 Questions regarding co All metre measurement Please print clearly in b 	nts shall be reported to 1/10th of a metre.	e Water Well Management Coordinator at 416-235-6203. Ministry Use Only
The state of the s	and Location of Well Information	MUN CON LOT
St Mary 15 RR#/Street Number/Name	Landfill	36 Thames
RR#/Street Number/Name	Ci	ty/Town/Village Site/Compartment/Block/Tract etc.
8 3 1	17 1918 7299 4787043	it Make/Model Mode of Operation: Undifferentiated Averaged Differentiated, specify
Log of Overburden and General Colour Most commo	edrock Materials (see instructions) material Other Materials	General Description Depth Metres
		Abandonment Dm 6.1n
- 1		
4		
/		
Hole Diameter	Construction Recor	Test of Well Yield
Depth Metres Diameter From To Centimetre	Inside vvaii	Depth Metres Pumping test method Draw Down Recovery Time Water Level Time Water Level
0 6.1 20.3	centimetres . centimetres	From To min Metres min Metres Pump intake set at - Static
	Casing Steel Fibreglass	(metres) Level Pumping rate - 1 1 (litres/min)
Water Record	Plastic Concrete Galvanized	Duration of pumping 2 2
Water found at Metres Kind of Water Kind of Water Sulphur	Steel Fibreglass Plastic Concrete	hrs + min/ Final water level eng 3 3 0 0 of pumping
Gas Salty Mineral	Galvanized	Recommended oump 4 4 4 type.
m Fresh Sulphu	Is Plastic Concrete	Shallow Deep Recommended pump 5 5
Other: Sulphu	Galvanized	Recom/nended pump 10 10
Gas Salty Mineral		rate. litres/min 15 15
After test of well yield, water was Clear and sediment free	Galvanized / O	(litres/min) 25 25 25 If pumping discontinued, give reason.
Other, specify	No Casing or Scree	40 40 50 50 50
Chlorinated Yes No	Open hole	donment Location of Well
	Sealing Record Annular space Aba type (bentonite slurry, neat cement slurry) etc. Volume (cubic r	Placed In diagram below show distances of well from road, lot line, and building.
061 Ben	onite 0.1	CR 123
		HWY
		7 900
*	Method of Construction	St. MARU'S
	ercussion	ingging 25m LANDFUL
Rotary (reverse) Borin	Water Use	
□ Domestic □ Indus □ Stock □ Com	mercial Not used	Audit No. 54007 Date Well Completed
☐ Irrigation ☐ Muni	Final Status of Well	2 3 3 3 4 1
	well Unfinished Abandon d, insufficient supply Dewatering d, poor quality Replacement well	package delivered? Yes No
	ontractor/Technician Information Well Contractor's Lic	Ministry Use Only Data Source Contracter 2 2 2
Altech Dilling 4 7 Business Address (street name, nu	rivestigative Services 728"	Date Received WXX MM DD Date of Inspection YYYY MM DD
140 Parthurs Tu	Dr. Waterloo On Nav IV	/ OCT 18 ZUUD /
	Date Submitted YYYY	MM_ DD
X J - W - 6506E (09/03)	2006	VOI Image: Comparison of the comparis

Ministry of Well Tag No. (Place Sticker and/or Print Below) Well Record the Environment A108429 Regulation 903 Ontario Water Resources Act Measurements recorded in: Metric Imperial Page | of 1 Well Owner's Information Corporation of the Tan of St. Marys + Smythe & town. Strangs on a Municipality Province Postal Code Telephone N ☐ Well Constructed by Well Owner one No. (inc. area code) Mailing Address (Street Number/Name) N4 K 1 B 651 92842340 408 James Street South Well Location Township for of St. Marys Address of Well Location (Street Number/Name) 1221 Water St. South Thanks Concession City/Town/Village
SI. Mary S

Plan and Sublot Number Perth County UTM Coordinates Zone Ontario NAD 8 3 1 7 4875784787041 Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form) Most Common Material Other Materials General Description Brown Grave Packed 1.22 0.0 Sand 6.4 1.22 derse clay Annular Space Results of Well Yield Testing After test of well yield, water was: Recovery Type of Sealant Used (Material and Type) Depth Set at (m/ft) Volume Placed Draw Down ☐ Clear and sand free ☐ Other, specify Time Water Level Time Water Level (m3/ft3) (min) 0.59 Bentonite Chip 4.57 0.0 Statio If pumping discontinued, give reason: Leve 1 1 Pump intake set at (m/ft) 2 2 3 3 Pumping rate (Vmin / GPM) Method of Construction Well Use 4 4 Cable Tool Diamond ☐ Public Commercial Not used Duration of pumping Dewatering Monitoring Jetting
Driving Rotary (Conventional) □ Domestic Municipal 5 5 hrs + min Livestock Rotary (Reverse) Test Hole Boring Cooling & Air Conditioning Final water level end of pumping (m/ft) Digging ☐ Irrigation 10 10 ☐ Industrial Air percussion Other, specify Other, specify 15 15 If flowing give rate (Vmin / GPM) Construction Record - Casing Status of Well 20 20 Open Hole OR Material Depth (m/ft) Inside ☐ Water Supply Recommended pump depth (m/ft) Wall (Galvanized, Fibreglass, Concrete, Plastic, Steel) Thickne Replacement Well 25 25 From To (cm/in) Test Hole Recommended pump rate (Vmin / GPM) Recharge Well 30 549 5.39 0.47 Plastic 0.0 Dewatering Well Observation and/or Monitoring Hole 40 40 Well production (Vmin / GPM) 50 50 Alteration (Construction) Disinfected? Yes No 60 60 Abandoned, Insufficient Supply Map of Well Location Construction Record - Screen Abandoned, Poor Outside Depth (m/ft) Water Quality Please provide a map below following instructions on the back Material (Plastic, Galvanized, Steel) Diamete (cm/in) Slot No Abandoned, other, specify From To 6.03 10 6.4 Plastiz 5.49 535.7 M 3rd line Other, specify St Marys Landfill 1221 water st. 5 Water Details Hole Diameter spring. Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diameter 1153 (cm/in) (m/ft) Gas Other, specify W 96m 20.9 Water found at Depth Kind of Water: Fresh Untested 0.0 (m/ft) Gas Other, specify Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify HV4-7 Well Contractor and Well Technician Information Altech Drilling + Medicalive Services 4d. 7282 usiness Address (Street-Number/Name) Municipality Comments Ministry Use Only Well owner's Date Package Delivered package delivered z 102059 196643331 Yes © Queen's Panter for Ortalia Queen's Panter for 20101025 010120 Ministry's Copy

Ministry of the Environment

Well Tag No. (Place Sticker and/or Print Below)

A 1 0 9 0 2 3

Well Record

Regulation 903 Ontario Water Resources Act

Well Loc														
Address of	Autori incini kiddi Yilli Yilli	on (Street Nu	mber/Name))	Т	ownship Blans	shard To	ownship		Lot	37	Concession	Ŕ	
County/Dis	strict/Munici	pality			C]	ity/Town/Vil Kirktor	llage 1					nce t ario	Posta	I Code K 1K0
NAD	dinates Zond 8 3 1 7	487	0 9 4 4		245	•	an and Sublo				Other			
Overburd General C			ials/Abando mon Material			rd (see instr er Materials	*	back of this for	***************************************	al Description	n	filovenska da de		pth (<i>m/ft</i>)
Black	1	Top So											From	2
Brown	n	Clay			Stones								2	7
Grey Grey		Clay Limes	tona		··· ·· · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		92	92 197
OTEA		Lintes	ione -		•				:				74	17/
		,												
	1		Annular							esults of W	73			
From	Set at (<i>m/ft</i>)		Type of Sea (Material ar	nd Type)		(m	e Placed	After test of v	nd sand fr		Time	raw Down Water Lev	el Time	1
	24 98		seal Slurr kgel Slu			-	100 lbs	Other, s		d, give reason:	Statio	90	(min)	(m/ft) 99
<u> </u>	90	Quic	wger Sim	y				CLEAF	?		Level	91.3	1	98.5
								Pump intake	set at /m	√ft)	2	92.6	2	98.1
Met	hod of Co	nstruction			Well Us	e		Pumping rate	e (I/min / (GPM)	3	93.9	3	97.7
Cable To		Diamono	· · · =	blic mestic	Commer	rcial 🔲	Not used Dewatering	Duration of p	oumping		4	94.1	4	97.1
Rotary ((Reverse)	☐ Driving	Liv	estock	Test Hol	е 🗆	Monitoring		. 30 m	in pumping <i>(m/f</i> t	5	96.3 98.4	5	96.5 94.5
Air perci	ussion	Digging		gation lustrial her, <i>specify</i>	☐ Cooling	& Air Conditi	oning		99			99	10	92.3
	·	nstruction R				Status	of Well	If flowing given NOT	e rate (I/m FLO	nin / GPM) WING	15 20	99	15 20	91.1
Inside Diameter	(Galvanize	e OR Material ed, Fibreglass,	Wall Thickness	Depth From	(m/ft)	X Water S	Supply ement Well	Recommend	led pump	depth (m/ft)	25	99	25	90
(cm/in) 6 5/8"	Stee	Plastic, Šteel)	(cm/in) 0.188 Wall	+2	98	☐ Test Ho	f	Recommend (I/min / GPM)		rate	30	99	30	90
Open ho	ole			98	197	Dewate	- 1		20	/COM	40	99	40	90
							ing Hole	Well product	30		50	99	50	90
***************************************						☐ Abando		Disinfected? XYes] No		60	99	60	90
Outside		onstruction R	ecord - Scre	1	ı (<i>m/ft</i>)	2l	ient Supply oned, Poor	Please provid	le a man l	Map of W			back	
Diameter (cm/in)		aterial Ivanized, Steel)	Siot No.	From	To	1	oned, other,	, leads provid	o a map .	Water Road	Street		ouok.	Î
						Other,					120			* `
		Water De	taile		<u> </u>	ole Diame	tor							
		Kind of Wate	r: 🗡 Fresh [Untested		h (<i>m/ft)</i> To	Diameter (cm/in)		!	\Box 。				
Water four		Other, spe Kind of Wate		Untested	0	197	9							
		Other, spe		Untested										
	•	☐Other, spe						Line 3						
Business N	lame of Well	ell Contractor Contractor ATER V			We	ioπ LContractor's	Licence No.							
		et Number/Na Oury Lin				nicipality Luca	\mathbf{n}	Comments:	70 feet	t off road	•	· · · · · · · · · · · · · · · · · · ·		
Province Ontari	o N	ostal Code 0M2J0	hayde	s E-mail Add enwatei	rwells@	on.aib	n.com	Well owner's	Date Pa	ickage Deliver			stry Us	e Only
1 1 1 1	1 1 1	area code) Na 0 5 7 No. Signature		_				information package delivered	Date W	$egin{array}{c c} 1 & 1 & 0 & 8 \ \hline 1 & 1 & 0 & 8 \ \hline 1 & 1 & 0 & 8 \ \hline \end{array}$	23 	Audit No.	130	3378
05065 (2007)	(12) © Oues		. G. Technicia	an and/or Co	1 .		4 M D D	☐ No	2 U Y Y	1 1 0 8 Y Y M M	2 3 0 0	Received	AN 2	7 2012

Well ID

Well ID Number: 7274050 Well Audit Number: *Z246734* Well Tag Number: *A190705*

This table contains information from the original well record and any subsequent updates.

Well Location

Address of Well Location	WATER ST
Township	BLANSHARD TOWNSHIP
Lot	037
Concession	TR
County/District/Municipality	PERTH
City/Town/Village	ST MARY'S
Province	ON
Postal Code	n/a
	NAD83 — Zone 17
UTM Coordinates	Easting: 487143.00
	Northing: 4787039.00
Municipal Plan and Sublot Number	
Other	

Overburden and Bedrock Materials Interval

General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To
BLCK	LOAM		LOAM	0 ft	2 ft
BRWN	CLAY	STNS	HARD	2 ft	21 ft
GREY	HPAN	BLDR	HARD	21 ft	102 ft
GREY	LMSN		HARD	102 ft	155 ft
BRWN	LMSN			155 ft	197 ft

Annular Space/Abandonment Sealing Record

Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
0 ft	23 ft	HIGH SOLIDS BENTONITE	Ξ
23 ft	106 ft	GEL/ SAND SLURRY	

Method of Construction & Well Use

Method of Construction	Well Use				
Rotary (Convent.)					
AIR ROTARY	Domestic				

Status of Well

Water Supply

Construction Record - Casing

Inside Diameter	Open Hole or material	Depth From	Depth To	
6 inch	STEEL	-2 ft	113 ft	
6 inch	OPEN HOLE	113 ft	197 ft	

Construction Record - Screen

Outside Diameter Material Pepth Depth From To

Well Contractor and Well Technician Information

Well Contractor's Licence Number: 7090

Results of Well Yield Testing

After test of well yield, water was	_CLEAR
If pumping discontinued, give reason	
Pump intake set at	180 ft
Pumping Rate	10 GPM
Duration of Pumping	1 h:0 m
Final water level	131 ft
If flowing give rate	
Recommended pump depth	180 ft
Recommended pump rate	 10 GPM
Well Production	

Disinfected?

____Y

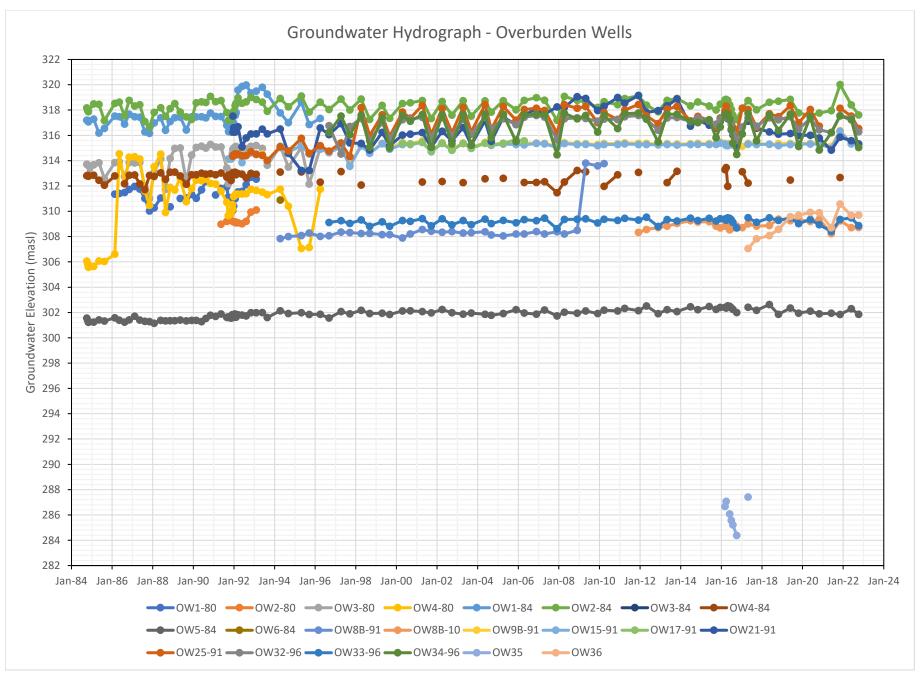
Draw Down & Recovery

Draw Down Time (min)	Draw Down Water level	Recovery Time (min)	Recovery Water level
SWL	125 ft		
1	127.5 ft	1	127.08 ft
2	128.33 ft	2	126.25 ft
3	128.92 ft	3	125.33 ft
4	129.33 ft	4	125 ft
5	129.83 ft	5	125 ft
10	131 ft	10	125 ft
15	131 ft	15	125 ft
20	131 ft	20	125 ft
25	131 ft	25	125 ft
30	131 ft	30	125 ft
40	131 ft	40	125 ft
45		45	
50	131 ft	50	125 ft
60	131 ft	60	125 ft

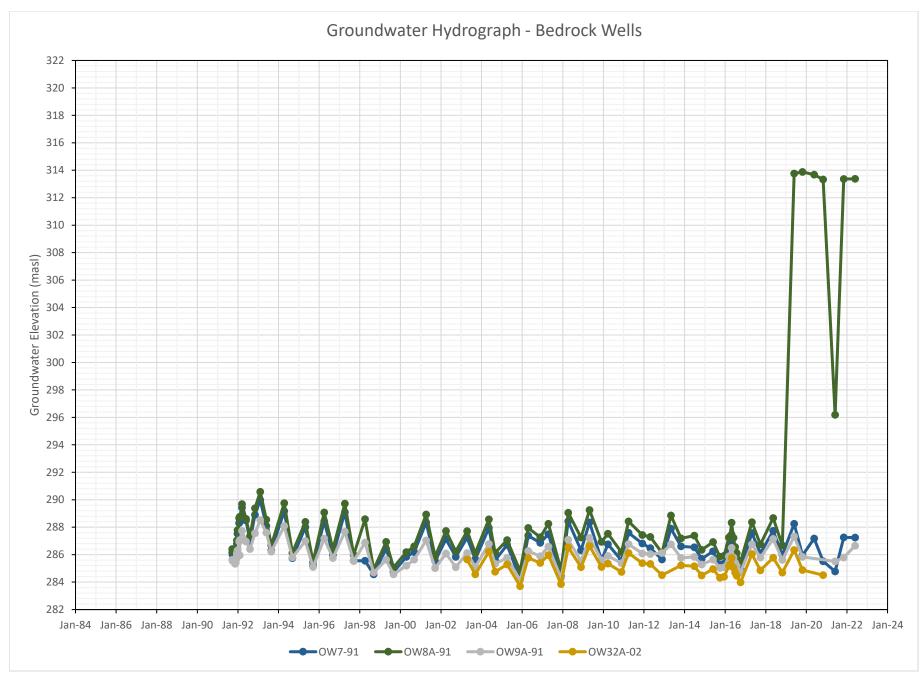
Water Details

Water Found at Depth	Kind
192 ft	Fresh

Hole Diameter


Depth From	Depth To	Diameter
0 ft	113 ft	10 inch
113 ft	197 ft	6 inch

Audit Number: Z246734


Date Well Completed: October 18, 2016

Date Well Record Received by MOE: October 28, 2016

APPENDIX C: HISTORICAL GROUNDWATER ELEVATION DATA (HYDROGRAPHS)

APPENDIX D: HISTORICAL GROUNDWATER QUALITY ANALYTICAL RESULTS (TABLES & GRAPHS)

	Sampling 5	Calcium	lloride		Hardness	enols	Hd blei	Field Conductivity	agnesium	DOC	المالم	Sulphate	ron	no	langanese	Sodium	rate	Vitrite	Ammonia	X	nzene	p-Xylene	Ethylbenzene	oluene	-Xylene	Xylene Mixture (Total)
Well	Date 2	S S	공		Ξa	£	Ë	i≝ S	Š	ă	₹	Su	- B	<u>e</u>	ž	S	ž	ž	Ā	¥	Be	É	並	10	ે	χΞ
	(1981 - 2012)	mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Jnits (2013 -)	mg/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
01110 00			45.0						01.0																	
OW3-80	Jun-81		15.0		238		8.30	590	21.0	4.0																
OW3-80	Oct-84	52.0	3.5		266	<1.0	8.00	610	33.0	1.6																
OW3-80	Feb-85	50.0	4.5		252	1.0	7.87	600	30.8	2.0																
OW3-80	May-85	50.5	3.5		250	4.5	7.96	640	30.0	2.6																
OW3-80	Aug-85	48.0	3.5	-	244	3.0	7.96	590	30.2	3.0	+					-										
OW3-80	Feb-86	43.5	6.0		221	<1.0	7.90	447	27.2	2.6	_					-										
OW3-80	May-86	44.5	3.5	1	232	<1.0	7.74	565	29.2	1.3	+					1				-			-			
OW3-80	Aug-86	45.5	3.5	+	229	<1.0	8.02	580	28.0	2.0	-	-			-	-			-	-					-	
OW3-80 OW3-80	Nov-86	44.5	2.5 3.5	+	224 229	<1.0	7.85	515	27.4	1.6	-				-	-			-	-					-	
OW3-80 OW3-80	Feb-87	45.5 44.5	4.0	+	229	<1.0 <1.0	7.97 7.91	555 605	28.0 27.8	1.4	1					-			-							
OW3-80	May-87	44.5	4.0		220	<1.0	8.04	530	27.8	2.8																
OW3-80	Aug-87 Jan-88	109.2	3.4		502		7.45	870	55.6	1.1																
OW3-80		88.4	2.9		426	<1.0 <1.0	7.45	894	49.7																	
OW3-80	May-88 Aug-88	72.8	2.9	-	355	<1.0	7.45	745	41.9	2.0	+									-			-			
OW3-80	Nov-88	282.5	46.3	-	1315	<1.0	6.98	2210	147.8		+									-						
OW3-80	Feb-89	423	733	-	2001	1.5	6.76	3800	229	2.8	+									-						
OW3-80	May-89	474	1115		2470	2.5	7.14	393	312	3.3																
OW3-80	Aug-89	181	186		856	<1.0	6.93	1672	98	2.6																
OW3-80	Nov-89	227	309	1	1111	<1.0	7.00	1862	132	2.5																
OW3-80	Feb-90	517	1442	+	2405	1.0	6.96	4390	270	2.0																
OW3-80	May-90	128	256	+	577	<1.0	7.30	1333	62	2.0																
OW3-80	Aug-90	182	270		834	<1.0	7.09	1560	92	3.2	+															
OW3-80	Nov-90	108	65		476	2.5	7.60	840	50	1.5	+															
OW3-80	Feb-91	99.0	30.6		437	<1.0	7.90	795	46.1	4.1																
OW3-80	Apr-91	95.4	31.4		442	<1.0	7.28	680	49.4	1.2																
OW3-80	Aug-91	122	59.7		565	<1.0	6.44	1159	63	2.6																
OW3-80	Nov-91	354	436		1700	3.0	6.90	1340	182	12.0																
OW3-80	Dec-91	506	978		2464	<1.0	7.03	1483	243	7.5																
OW3-80	Feb-92	317	717		1398	1.5	7.06	2010	147	2.2																
OW3-80	May-92	125	135		574	<1.0	7.20	840	63.5	2.3																
OW3-80	Aug-92	294	630		1361	1.5	7.02	4200	152	2.4																
OW3-80	Nov-92	139	139		623	<1.0	7.22	845	67.1	1.4																
OW3-80	Feb-93	129	122		578	<1.0	7.28	680	62.1	<0.5																
OW3-80	May-93	106	107	t	483	<1.0	7.20	750	53.0	2.6 U																
OW3-80	Aug-93	91.9	72.5		428	<1.0	8.00	900	48.1	3.0																
OW3-80	Apr-94	154	141		678	<1.0	7.10	1400	71.3	<0.5																
OW3-80	Sep-94	202	217		916	<2.0	7.50	1500	100	<0.5																
OW3-80	Apr-95	209	255	1	919	<1.0	7.00	1600	96.4	7.0 U																
OW3-80	Sep-95	180	250		818	<1.0	7.20	1600	89.6	28.4 U																
OW3-80	Apr-96	158	31		694	<1.0	7.56	1880	72.7	<0.5																
OW3-80	Sep-96	sea	led and aba	ando	ned Augu	ıst 1996																				

Well	Sampling Date	Notes	Calcium	Chloride		Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)		mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside I	Jnits (2013 -)		mg/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW4-80	Oct-84		-	-		-	1.0	-	-	-	2.0																
OW4-80	Feb-85		89.5	10.5		413	<1.0	7.76	1180	46.0	1.3																
OW4-80	May-85		88.5	8.5		402	10.5	7.80	1270	44.0	4.0																
OW4-80	Aug-85		89.5	9.5		413	1.5	7.75	1260	46.0	2.5																
OW4-80	Feb-86	\vdash	82.5	10.5		371	<1.0	7.93	1050	40.0	13.5																
OW4-80	May-86	\vdash	110.0	12.0		605	<1.0	7.60	1280	80.0	1.5																
OW4-80	Aug-86	\vdash	85.5	11.5		517	<1.0	7.82	1220	74.0	2.0																
OW4-80	Nov-86	\vdash	101.0	11.0	1	516	<1.0	7.80	995	64.0	2.0	-															
OW4-80	Feb-87	\vdash	125.0	14.0	1	725	<1.0	7.68	1310	100.0	2.5																
OW4-80	May-87		132.0	15.0		713	<1.0	7.62	1370	93.0	2.9																
OW4-80	Aug-87	\vdash	105.0	13.5	1	567	<1.0	7.26	1040	74.0	2.0	-															+
OW4-80	Nov-87		113.2	12.6		575	<1.0	7.63	1050	70.8	2.0																+
OW4-80	Jan-88		123.8	13.3		621	<1.0	7.20	1020	75.7	1.4	_															+
OW4-80 OW4-80	May-88	\vdash	175.5	19.3	-	923	<1.0	6.94	1554	117.6	1.6	_															
	Aug-88	\vdash	191.0	36.6		979	<1.0	7.29	1615	121.6	2.3																
OW4-80 OW4-80	Nov-88	\vdash	164.0	17.8 94.2	-	849 850	<1.0	6.85 7.05	1487	106.5 108	1.6 1.5																
OW4-80 OW4-80	Feb-89		162 222	295		1058	<1.0 1.0	6.98	1458 2130	122	3.4																\vdash
OW4-80	May-89 Aug-89	\vdash	617	1609		3067	3.0	6.90	4600	370	15.5																
OW4-80	Nov-89		411	1155		2053	2.0	6.80	3180	249	1.0 U	_															++
OW4-80	Feb-90		422	1035		2077	1.0	7.08	3220	248	1.0 0																+
OW4-80	May-90		554	1267		2650	1.0	7.10	3090	307	2.5																+
OW4-80	Aug-90	\vdash	430	1248		2113	<1.0	7.10	3300	252	2.0	+															
OW4-80	Aug-90	D	450	1208		2147	<1.0	7.01	3300	248	1.8												+				
OW4-80	Nov-90	-	276	690		1329	5.5	6.80	2040	155	2.1																+
OW4-80	Feb-91		206	410		972	<1.0	7.50	1969	111	2.8																+
OW4-80	Apr-91		130	210		626	<1.0	7.31	1396	73	1.8																\vdash
OW4-80	Aug-91		105	164		485	<1.0	6.54	1504	54	2.2																
OW4-80	Nov-91		114	146		483	1.0	6.70	1068	59.1	<0.5																\vdash
OW4-80	Dec-91		127	160		566	<1.0	7.33	906	65.7	<0.5																
OW4-80	Feb-92		126	235		624	<1.0	7.23	1050	75	1.6																
OW4-80	May-92		173	422		834	<1.0	7.34	1400	97.5	3.8																
OW4-80	Aug-92		226	524		1092	3.0	7.22	3900	128	1.5																\vdash
OW4-80	Nov-92		148	284		701	1.5	7.29	1300	80.4	1.5																
OW4-80	Feb-93		111	150		526	<1.0	7.28	860	60.4	1.0																
OW4-80	May-93		112	137		284	<1.0	7.30	625	63.5	3.5 U																
OW4-80	Aug-93		115	142		560	<1.0	7.80	1300	66.4	3.0																
OW4-80	Apr-94		145	160		683	<1.0	7.50	1500	78.0	<0.5																\Box
OW4-80	Sep-94		155	175		737	<2.0	8.20	1500	85.0	<0.5																
OW4-80	Apr-95		263	421		1192	<1.0	7.10	2000	130	16.5																
OW4-80	Sep-95		188	294		865	<1.0	7.30	1700	96.1	23.5 U																
OW4-80	Apr-96		140	232		646	<1.0	7.50	1980	72.1	<0.5																
OW4-80	Sep-96		sea	led and ab	ando	ned Augi	ust 1996																				

Well	Sampling 95 N	Calcium	Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	Z L	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Units (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
OW1-84	Oct-84	43.5	3.0	241	<1.0	7.93	500	32.2	0.9																
OW1-84	May-85	48.5	7.5	247	1.0	7.89	535	30.6	1.5																
OW1-84	Aug-85	48	14.0	245	<1.0	7.80	530	30.4	1.4																
OW1-84	Feb-86	100	172	401	<1.0	7.97	955	36.6	2.3																
OW1-84	May-86	86.5	148	374	<1.0	7.72	1030	38.2	1.4																
OW1-84	Aug-86	49	35.5	256	<1.0	8.05	630	32.4	1.5																
OW1-84	Nov-86	55.5	59.0	283	<1.0	7.95	655	35.0	1.4	1								ļ							
OW1-84	Feb-87	59.5	81.5	288	<1.0	7.96	760	33.8	1.2																
OW1-84	May-87	53.5	50.5	271	<1.0	8.00	700	33.2	1.3																
OW1-84	Aug-87	39	21.5	231	<1.0	8.20	535	32.4	1.1																
OW1-84	Nov-87	53.3	23.9	232	<1.0	7.97	565	34.6																	
OW1-84	Jan-88	50.6	21.9	255	<1.0	7.53	490	31.1	0.9																
OW1-84	May-88	47.3	27.2	252	<1.0	7.60	585	32.5	1.8																
OW1-84	Aug-88	48.4	18.9	257	<1.0	7.47	507	32.9	1.6																
OW1-84	Nov-88	48.2	20.1	252	<1.0	7.15	543	31.8	0.8	ļ											-				
OW1-84	Feb-89	46.9	28.9	252	<1.0	7.14	540	32.8	0.7						1										
OW1-84	May-89	45.4	22.0	247	<1.0	7.50	513	32.5	0.8																
OW1-84	Aug-89	49.7	19.0	260	<1.0	7.33	486	33.0	0.8	-															
OW1-84	Nov-89	21.2	3.7	118	<1.0	7.60	290	15.8	0.5 U	-															
OW1-84	Feb-90	45	18.8	251	<0.1	7.70	470	33.5	0.2	<u> </u>					1			ļ							
OW1-84	May-90	46.2	20.3	256	<1.0	7.55	423	34.0	1.2	-								-			1				
OW1-84	Aug-90	45.1	27.4	250	<1.0	7.31	463	33.2	1.1	-								-			-				-
OW1-84 OW1-84	Nov-90 Feb-91	49.4 43.8	21.5 28.0	266 259	1.5 <1.0	7.30 8.10	360 487	34.5 36.4	0.9 2.0	-				-				-			+				-
OW1-84	May-91	40.6	24.4	246	<1.0	7.68	400	35.1	1.3	1											-				-
OW1-84	Aug-91	49.1	32.1	268	<1.0	7.90	615	35.1	1.5																-
OW1-84	Nov-91	41.8	31.2	256	<1.0	7.30	450	31.8	<0.5	-											-				
OW1-84	Dec-91	57.6	29.9	272	<1.0	7.58	429	42.8	4.5	+					1			1							
OW1-84	Feb-92	279	579	900	1.0	6.80	1780	49.1	4.6	1															
OW1-84	May-92	195	483	658	1.0 U	7.09	1430	41.4	4.7												1				
OW1-84	Aug-92	256	706	831	14.0	7.09	3400	46.5	9.7												1				
OW1-84	Nov-92	302	631	946	1.5	6.94	2000	46.5	4.6	1				 				1			+	1			$\vdash \vdash \vdash$
OW1-84	Feb-93	293	516	926	<1.0	6.8	1600	47.1	15	1				 				1			+	 			$\vdash \vdash \vdash$
OW1-84	May-93	271	692	850	<1.0	7.10	2150	42.0	<0.5	1				 				1	-		+	 			\vdash
OW1-84	Aug-93	289	975	908	<1.0	7.40	3200	45.4	<0.5	1															
OW1-84	Apr-94	124	194	496	<1.0	7.40	1200	45.2	<0.5	1															
OW1-84	Sep-94	76.1	136	349	<2.0	8.20	800	38.6	<0.5																
OW1-84	Apr-95	263	500	844	76	7.20	1800	45.5	15.5																
OW1-84	Sep-95	80.9	90.5	391	<1.0	7.60	700	45.9	32.5 U																
OW1-84	Apr-96	99.6	218	379	<1.0	7.81	2820	31.6	<0.5					1							<u> </u>				
OW1-84	Sep-96		led and aba			1		25																	

Well	Sampling Date	Calcium		Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	N T	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	Units (2013 -)	mg/L mg/L		mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
OW2-84 OW2-84	Oct-84 Feb-85	22.5 96.0		1.0 7.0		120 305	<1.0 <1.0	8.20 7.54	349 630	15.4 15.8	0.8 1.3																
OW2-84 OW2-84	May-85 Aug-85	35.0 25.5		2.0		154 130	1.0	8.10 8.11	405 332	16.2 16.0	0.9																
OW2-84	Feb-86	25.0		5.5		127	<1.0	7.98	284	15.6	1.1																
OW2-84 OW2-84	May-86 Aug-86	22.0 22.5		2.0 1.5		121 122	<1.0 <1.0	8.07 8.14	331 346	16.0 16.0	1.1																
OW2-84 OW2-84	Nov-86 Feb-87	23.5 24.0		1.5 2.0	-	129 133	<1.0 <1.0	8.20 8.08	334 347	17.0 17.6	1.0 0.7																
OW2-84 OW2-84	May-87 Aug-87	24.0		2.0		129 125	<1.0 <1.0	8.05 8.14	365 319	16.8 16.8	1.1																
OW2-84	Nov-87	26.1		1.61		137	<1.0	8.08	347	17.5	1.1																
OW2-84 OW2-84	Jan-88 May-88	24.9 24.5		4.08 1.58		126 127	<1.0 <1.0	7.70 7.72	300 335	15.4 16.0	0.8 1.0																
OW2-84 OW2-84	Aug-88 Nov-88	24.1 24.7		1.96 3.22	\dashv	127 126	<1.0 <1.0	7.60 7.48	315 343	16.2 15.7	1.8 0.8	+															
OW2-84 OW2-84	Feb-89 May-89	23.2		1.8	-	123 128	1.0	7.35 7.68	312 309	15.7	0.8																
OW2-84	Aug-89	25.9		2.3		135	<1.0	7.54	306	17.1	0.8																
OW2-84 OW2-84	Nov-89 Feb-90	44.8 22.2		15.7 2.6		247 122	<1.0 1.0	7.70 7.40	466 305	32.7 16.2	0.8 U																
OW2-84 OW2-84	May-90 Aug-90	26.5 23.8		2.6	\dashv	133 128	<1.0 <1.0	7.85 7.40	263 307	16.3 16.6	1.7 0.8																
OW2-84 OW2-84	Nov-90 Feb-91	22.8		2.2	4	123 123	2.0	7.40 8.30	220 300	16.0 16.2	0.6 0.7 U																
OW2-84	May-91	19.8		0.7		120	<1.0	8.35	246	17.0	0.5																
OW2-84 OW2-84	Aug-91 Nov-91	22.4 41.8		2.1 1.89		123 125	<1.0 <1.0	6.71 7.60	390 330	16.2 31.8	1.6 <0.5																
OW2-84 OW2-84	Nov-91 [Dec-91	23.5		2.43 2.46		118 133	<1.0 <1.0	7.60 7.93	330 315	15.8 19.7	3.5 7.5																
OW2-84 OW2-84	Feb-92	26.1		3.2	U	141	<1.0 <1.0	7.60	248	18.4	0.5																
OW2-84	Feb-92 I	29.6		3.1 1.6	U	135 150	<1.0	7.60 7.88	248 250	18.4	2.1																
OW2-84 OW2-84	Aug-92 Nov-92	28.1 25.9		1.9	1	152 138	<1.0 <1.0	8.04 7.76	650 250	19.9 17.7	1.0 0.6																
OW2-84 OW2-84	Feb-93 May-93	48 24.8	+	4.4 1.95		193 129	<1.0 <1.0	7.70 8.20	250 290	17.8 16.3	6.0 5.8 U																
OW2-84	May-93	23.2		2.17		122	<1.0	NA	NA	15.6	2.5 U																
OW2-84 OW2-84	Aug-93 Apr-94	22.4		2.19		125 143	<1.0 <1.0	8.00 7.90	300 300	16.8	<0.5																
OW2-84 OW2-84	Sep-94 Apr-95	28 26.2		2.01		141 136	<2.0 <1.0	8.80 7.80	300 300	17.2 17.2	<0.5 U																
OW2-84 OW2-84	Sep-95 Apr-96	38.2 24.6		2.27 1.98	4	182 131	<1.0 <1.0	7.80 8.50	300 320	21.1 17.0	58.7 U <0.5																
OW2-84 OW2-84	Sep-96	27.3		1.79		142	<1.0 <1.0	8.45 8.45	307 307	17.9	<0.5 <0.5																
OW2-84	Sep-96 (33.7		2.47	1	164	<1.0	8.70	300	19.5	<0.5																
OW2-84 OW2-84	Sep-97 Apr-98	30.4 25.1		2.22		160 135	<1.0 <1.0	8.80 8.00	300 318	20.5 17.7	<0.5 1.8	<u> </u>															
OW2-84 OW2-84	Sep-98 Apr-99	31.0 27.5		1.8 4.74	\dashv	160 144	<1.0 <1.0	7.95 8.00	280 306	20.0 18.4	0.8 1.4											-					
OW2-84 OW2-84	Sep-99 Apr-00	25 28		2.46	U	127 149	<1.0 <2.0	7.96 7.77	365 434	15.8	3.7 U																
OW2-84	Sep-00	27.4		2.47		151	<2.0	8.04	326	20.1	2.3																
OW2-84 OW2-84	Apr-01 Sep-01	28.1 29.2		<3.0 <3.0		146 157	<2.0 <1.0	7.58 8.00	309 318	18.3 20.3	1.3 1.1																
OW2-84 OW2-84	Apr-02 Sep-02	25.2 31	$oxed{H}$	<3.0 2.7	7	134 164	<1.0 <1.0	7.27 5.30	324 231	17.2 21	4.9 U 2.1 U																
OW2-84 OW2-84	Apr-03 Sep-03	28	+	4.6 4.35	4	147 149	1.0	8.10 7.99	337 236	19	2.0	170 166	20.1	0.15 0.13	0.038	0.015 0.015	25 22					<0.0005 <0.0005	<0.0005 <0.0005		<0.0005 <0.0005	<0.0005 <0.0005	
OW2-84	May-04	1 25.3		3.02		135	<2	8.05	339	17.5	<1.0	-	-	-	-	-	-					-	-	-	-	-	
OW2-84 OW2-84	Sep-04 Apr-05	28.4 26.1		6.37 3.84		144 138	<2 <2	8.29 7.79	281 333	17.7 17.6	<1.0 <1.0	158 164	23 19.1	0.108 0.124	0.223 0.081	0.021 0.016	22.1 23.6					<0.00004 <0.00004	<0.0001 <0.0001	<0.00005 <0.00005	0.0004 <0.00004	<0.00004 <0.00004	

			П																				e e			a
Well	Sampling Sampling	Calcium		Chloride	lardness	henols	Hd blei	Field	lagnesium	200	Alkalinity	Sulphate	oron	6	langanese	Sodium	itrate	litrite	mmonia	Z	enzene	ı,p-Xylene	Ethylbenzene	oluene	-Xylene	Xylene Mixture (Total)
CRA Units (2	mg/L	\vdash	mg/L	mg/L	µg/L	ш.	µS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	_≥ mg/L	mg/L	Z	Z	- ▼	-	mg/L	mg/L	mg/L	mg/L	mg/L	X Z
Burnside U		mg/L		mg/L	mg/L	mg/L		uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ma/L	ma/L	mg/L	mg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L
OW2-84	Nov-05	25.5		3.12	133	<1.0	7.47	282	16.9	<1.0	150	19.3	0.091	0.144	0.0137	22.2	mg/L	mg/L	mg/L	mg/L	<0.00004	<0.0001	< 0.00005	<0.00004	< 0.00004	pg/L
OW2-84	Apr-06	23.5		4	130	<1	8.85	320	18.4	1.0 U	160	20	0.031	<0.05	0.0137	23.5					<0.0005	<0.001	<0.0005	<0.0005	<0.0005	
OW2-84		25.3	Ħ	4	140	<1	NA	NA.	19.1	1.0 U	150	19	0.18	<0.05	0.015	24.8					-	-	-	-	-	
	Nov-06	26	Ħ	4	150	1.0	J 7.53	330	20	1.0	160	19	0.12	<0.05	0.016	26					<0.5	<1	<0.5	<0.5	<0.5	
OW2-84	Apr-07	23.5		4	120	<1	8.12	302	15.4	<1.0	160	19	0.09	<0.05	0.014	19.2					<0.5	<1	<0.5	<0.5	<0.5	
	Nov-07	27.2		4	140	<1	8.09	330	17.3	6.0 J	160	18	0.11	<0.05	0.002	28					<0.5	<1	<0.5	<0.5	<0.5	
OW2-84		27.5		4	140	<1	NA	NA	18.4	3.0 J	160	18	0.12	<0.05	0.002	28					<0.5	<1	<0.5	<0.5	<0.5	
OW2-84	Apr-08	25.6		5	130	1.0	7.72	339	-	<1.0	160	20	0.12	< 0.05	<0.001	21.7					<0.5	<1	<0.5	<0.5	<0.5	
OW2-84	Nov-08	28.1		9	150	<1	7.14	320	18.2	1.0	-	-	-	-	-	-					-	-	-	-	-	
OW2-84	Apr-09	24.6		4.7	133	1.0	8.15	312	17.4	1.8	161	19.7	0.119	< 0.050	0.0021	21.9					< 0.50	<1.0	<0.50	<0.50	< 0.50	
OW2-84	Nov-09	25.2		6.4	134	3.0	7.64	366	17.2	<1.0	163	19.1	0.115	< 0.050	0.0120	22.3					< 0.50	<1.0	< 0.50	< 0.50	< 0.50	
OW2-84	Mar-10	24.8		3.6	123	<1.0	8.37	352	14.8	1.0	162	19.9	0.125	0.129	0.0132	21.0					< 0.50	<1.0	< 0.50	<0.50	< 0.50	
OW2-84	Nov-10	31.8		3.8	158	<1.0	6.88	263	19.2	2.0	166	19.2	0.124	< 0.050	0.0078	26.5					< 0.50	<1.0	<0.50	< 0.50	< 0.50	
OW2-84	Mar-11	23.7		3.9	128	<1.0	8.18	351	16.6	1.3	163	19.4	0.117	<0.050	0.0017	24.6					< 0.50	<1.0	<0.50	<0.50	<0.50	
OW2-84	Dec-11	39.5		4.3	175	<1.0	8.16	350	18.6	<1.0	159	19.9	0.108	< 0.050	0.0047	22.7					< 0.50	<1.0	< 0.50	< 0.50	< 0.50	
OW2-84	Apr-12	32.1		4.1	146	<1.0	8.42	377	15.9	<1.0	-	-	-	-	-	-					-	-	-	1	-	
OW2-84	Nov-12	41.4		4.4	178	<1.0	7.36	288	18.0	1.9	-	-	-	-	-	-					-	-	-	-	-	
OW2-84	May-13	31.8		4.98	161	<0.001	7.86	358	19.7	1.0	-	-	-	-	-	-					-	-	-	-	-	
OW2-84	Oct-13	25.7		4.73	134	<0.001	7.98	339	16.9	2.7	160	21.2	0.104	<0.010	0.013	23.3					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Jun-14	26.0		4.98	137	<0.001	7.84	343	17.6	0.8	158	21.0	0.110	<0.010	0.014	21.9					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Nov-14	25.2		5.72	135	<0.001	8.11	337	17.4	1.2	154	22.2	0.112	<0.010	0.012	22.7					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	May-15	27.2		5.75	138	<0.001	7.83	357	17.0	2.9	165	22.2	0.100	<0.010	0.013	22.8					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Sep-15	26.5	_	7.08	139	<0.001	7.91	273	17.8	0.8	154	23.2	0.109	<0.010	0.013	23.2					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Apr-16	27.0		6.48	140	<0.001	8.09	293	17.7	1.2	166	22.8	0.101	<0.010	0.012	23.6	0.23	< 0.05	0.06		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Oct-16	25.0		5.84	132	<0.001	NA	NA	16.8	0.9	161	22.1	0.114	0.713	0.016	21.6	<0.05	<0.05	0.17	0.44	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Apr-17	25.4	_	5.96	133	<0.001	8.36	294	17.0	1.1	164	19.9	0.110	<0.010	0.012	23.2	0.21	<0.05	0.05	0.12	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Sep-17	23.9	_	6.44	130	<0.001	NA 0.4	NA	17.0	1.5	165	23.2	0.100	<0.010	0.014	22.6	0.31	<0.05	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	May-18	25.7		7.88	136	-0.001	8.1	266	17.4	1.9	180	23.9	0.121		0.059	22.5			.0.00	0.40	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	Oct-18	23.9		5.9 9.74	126 124	<0.001 <0.001	7.96 7.82	152.5 320	16.0	1.5 0.6	140 165	20.3	0.105 0.116	<0.01	0.012	21.9	0.15	<0.05	<0.02	0.49	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10	<0.20 <0.20
	May-19 Oct-19	25.0		7.06	131	<0.001	7.82	288	16.2 16.7	3.5	157	23.5	0.116	<0.010	0.012	22.3	0.15 0.11	0.39	0.08	<0.10	<0.20	<0.20	<0.10 <0.10	<0.20	<0.10 <0.10	<0.20
	May-20	24.8	_	6.25	129	<0.001	8.05	388.8	16.2	1.1	162	23.5	0.115	<0.010	0.014	22.2	<0.25	<0.25	<0.09	0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	Oct-20	21.6	_	7.61	116	0.013	7.94	253.8	15.0	3.2	162	23.2	0.119	0.114	0.006	21.7	0.29	0.08	0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Jun-21	26.2		7.6	137	0.003	8.00	390.8	17.3	0.9	163	21.6	0.107	0.034	0.018	22.2	0.40	<0.05	<0.01	0.69	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Nov-21	23.8	_	7.88	127	0.005	7.97	330.0	16.5	2.0	163	22.9	0.100	<0.034	0.007	21.7	0.40	<0.05	<0.02	0.4	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	May-22	25.2		8.46	129	0.003	7.78	186.7	16.1	0.9	168	24.5	0.112	0.012	0.014	22	0.20	<0.05	<0.02	0.14	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW2-84	Oct-22	23.0	_	7.84	117	0.002	7.86	177.0	14.5	1.0	155	22.3	0.112	0.012	0.014	19.9	0.54	<0.05	<0.02	0.23	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
O 1 V Z - U T	JUI-22	20.0	+	7.04	117	0.001	7.00	177.0	17.5	1.0	100	22.3	0.101	0.017	0.013	13.3	0.54	\0.03	V0.02	0.23	NO.20	NO.20	X0.10	VU.2U	\0.10	V0.20
Minimum		19.8	1	0.70	116	0.001	5.30	153	14.5	0.5	140	18.0	0.090	0.003	0.002	19.2	0.05	0.03	0.01	0.05						
Maximum		96.0		16.7	305	5.500	8.85	650	32.7	58.7	180	25.7	0.180	1.220	0.059	28.0	0.54	0.39	0.61	0.89						
Average		27.5	_	4.05	140	0.565	7.89	315	17.6	2.2	161	21.1	0.116	0.084	0.013	22.9	0.25	0.07	0.09	0.27	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

		_			-						1	1	1		1		T	1		1						1	
Well	Sampling Date	Notes		Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	NAT	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012) Jnits (2013 -)	mg mg		mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L µg/L	mg/L μg/L	mg/L μg/L	μg/L
OW4-84	Oct-84	185	5.0	5.5		973	<1.0	7.69	1600	124.0	2.1																
OW4-84	Feb-85	140	0.0	6.0		861	<1.0	7.53	1600	124.0	1.4																
OW4-84 OW4-84	May-85 Aug-85		2.0	3.5 12.5		872 874	3.0 11.0	7.75 7.65	1725 1700	122.0 126.0																	
OW4-84	Feb-86	125	5.0	13.0		683	<1.0	7.84	1160	90.0	6.5																
OW4-84	May-86	115		15.5		724	3.0	7.77	1480	106.0																	
OW4-84 OW4-84	Aug-86 Nov-86	105		47.0 30.5		600 625	<1.0 <1.0	7.77 7.72	1020 1140	82.0 82.0	3.4 1.9																
OW4-84	Feb-87	112	2.0	34.0		589	1.5	7.65	1170	75.0	2.1																
OW4-84 OW4-84	May-87 Aug-87	148		33.3 34.6		719 539	<1.0 <1.0	7.56 7.18	1200 910	84.2 61.4	2.1																
OW4-84	Nov-87	101		35.8		519	<1.0	7.18	1000	64.4																	
OW4-84	Jan-88		0.0	36.2		538	<1.0	7.31	1050	63.3																	
OW4-84 OW4-84	May-88 Aug-88	109		40.7 56.3	\vdash	523 491	<1.0 2.5	6.50 7.05	1015 913	60.7 59	3.2	1					-		-					-			\vdash
OW4-84	Nov-88	99	.3	76.6		488	3.5	7.32	934	58	3.9																
OW4-84	Feb-89	10		114		529	1.5	7.13	1030	64	3.2																
OW4-84 OW4-84	May-89 Aug-89	10		139 206	\vdash	549 626	2.5 3.5	7.20 7.05	957 1131	67 78.0	3.9	1					-							 			\vdash
OW4-84	Nov-89	12	4	254		640	1.5	7.15	1055	80.1	5.5																
OW4-84	Feb-90	12	2	218		701	<1.0	7.21	1090	96.0	6.1																
OW4-84 OW4-84	May-90 Aug-90	13	5	339		717	<1.0	7.80	1274	92	9.2																
OW4-84	Nov-90	-		-		-	-	-	-	-	-																
OW4-84 OW4-84	Feb-91 May-91	12		312 301		662 733	<1.0 <1.0	6.33 7.50	1519 949	86 99.0	9.6 1.0 U																
OW4-84	Aug-91	12		331		674	<1.0	7.50	949	84.9	<0.5																
OW4-84	Nov-91	2 13		296		723	<1.0	7.20	859	87.6	<0.5																
OW4-84 OW4-84	Feb-92 May-92	12		329 354		693 704	9.0 6.0	6.91 7.21	1030 1200	93.0 93.8	10.7 9.3																
OW4-84	Aug-92	12		279		745	10.6	7.54	2806	103	9.4																
OW4-84	Nov-92	3 10		17.5		484	<1.0	7.17	620	56.7	1.0																
OW4-84 OW4-84	Feb-93 May-93	11 Di		288		618	<1.0	7.33	940	79.2	11.0																
OW4-84	Aug-93	Di	'n																								
OW4-84 OW4-84	Apr-94	14		260		688	<1.0	7.10	1600	82.3	<0.5																
OW4-84	Sep-94 Apr-95	23 23		182		1059	<1.0	7.0	1800	117	16.5																
OW4-84	Sep-95	Dı	'y																								
OW4-84 OW4-84	Apr-96 Sep-96	92 Di		49.7		382	<1.0	7.97	1020	36.4	<0.5																
OW4-84	Apr-97	43		30.9	H	245	2.0	8.10	800	33.1	4.5						<u> </u>										
OW4-84	Sep-97	Di		70.0		000	47	7.04	4440	00.4	44.0																
OW4-84 OW4-84	Apr-98 Sep-98	16 Di		79.9	\vdash	669	17	7.61	1110	62.4	11.2	1					-							 			\vdash
OW4-84	Apr-99	Dı	'y																								
OW4-84 OW4-84	Sep-99 Apr-00	Di Di			\square																						\vdash
OW4-84 OW4-84	Sep-00	Di			\vdash						+													 			\vdash
OW4-84	Apr-01	15	2	31.3		564	<2.0	7.04	1230	44.7	9.7																
OW4-84 OW4-84	Apr-02 Sep-02	78 Di		5.6		268	<1.0	6.80	603	17.5	3.4 U	1					-										
OW4-84	Apr-03	9		8.85		374	1.0	7.68	883	20	6.4																
OW4-84	Sep-03	Di		4.5		0=0			F.0.0	4= ^																	
OW4-84 OW4-84	May-04 Sep-04	1 82 Di		1.2		279	<2	7.55	520	17.9	6	1												-			$\vdash \vdash \vdash$
OW4-84	Apr-05	64		1.87		216	<2	7.48	378	13.6	<1.0																
OW4-84	Nov-05	Di				200		0.04	400	40.4																	
OW4-84 OW4-84	Apr-06 Nov-06	89		4 <2	Н	290 310	1 U		466 552	16.4 19	5 8	1					 		 					 			
OW4-84	Apr-07	85	.4	4		280	12	7.43	543	17.2	6																
OW4-84 OW4-84	Nov-07	Di 64	y	6	Н	210	3	7.52	424	_	7																
UW4-84	Apr-08	64	.1	J 6	Ш	∠10	3	7.52	424	ı -	/				<u> </u>		<u> </u>	L	1					1	l		Щ

Well	Sampling 5	Calcium	Chloride	Hardness	Phenols	Hd bH	Field	Magnesium	DOC	Alkalinity	Sulphate	Soron	EQ.	Vanganese	Sodium	Vitrate	Vitrite	Ammonia	JKN N	3enzene	n,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				, i	mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Jnits (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW4-84	Nov-08	99.7	8	330	Ĭ	6.95	579	20.3	7						Ť		Ť	Ť							
OW4-84	Apr-09	60.5	2.7	195	9	7.31	355	10.8	11.2																
OW4-84	Nov-09	Dry																							
OW4-84	Mar-10	106	4.3	345	<1.0	7.71	801	19.2	10.7																
OW4-84	Nov-10	97.3	3.6	329	<1.0	6.62	487	21.0	16.4																
OW4-84	Mar-11	Dry																							
OW4-84	Dec-11	105	<2.0	345	2	7.89	562	20.4	8.5																\neg
OW4-84	Apr-12	Dry																							\Box
OW4-84	Nov-12	Dry																							\Box
OW4-84	May-13	710	0.88	2450	<0.001	7.90	453	164	6.5																
OW4-84	Oct-13	86.2	0.58	279	<0.001	7.49	524	15.6	8.6	275	14.8	0.023	<0.010	< 0.002	2.17										
OW4-84	Jun-14	Dry																							
OW4-84	Nov-14	Dry																							
OW4-84	May-15	Dry																							
OW4-84	Sep-15	Dry																							
OW4-84	Apr-16	Ins																							\neg
OW4-84	Oct-16	Dry																							\Box
OW4-84	Apr-17	71.1	0.69	235	<0.001	7.59	368	14.0	5.9	244	7.8	0.015	0.036	< 0.002	1.55	3.46	< 0.05	<0.02	1.93	<0.20	<0.20	<0.10	0.41	<0.10	<0.20
OW4-84	Sep-17	Dry																							
OW4-84	May-18	Dry																							
OW4-84	May-19	86.9	1.12	286	0.002	7.07	538	16.7	7.7	295	7.02	0.032	<0.010	0.105	1.53	4.65	0.06	0.1	1.23	<0.20	0.22	0.12	0.41	<0.10	0.22
OW4-84	Oct-19	Dry																							
OW4-84	May-20	Dry																							
OW4-84	Oct-20	Dry																							
OW4-84	Jun-21	Dry																							
OW4-84	Nov-21	110	0.51	368	0.044	7.44		22.6	8.4	367	22.4	0.022	<0.010	< 0.002	2.67	0.92	< 0.05	<0.02	0.71	<0.20	0.23	<0.10	0.36	<0.10	0.23
OW4-84	May-22	Dry																							
OW4-84	Oct-22	Dry				1													-						
Minimum		43.5	0.51	195	0.001	6.33	355	10.8	0.3	244	7.0	0.015	0.005	0.105	1.5	0.92	0.03	0.01	0.71						\vdash
	+ +	710	354	2450	17.000	8.31	2806	164	16.5	367	22.4	0.013	0.005	0.105	2.7	4.65	0.03	0.01	1.93						\vdash
Maximum	 	124	93.3	571	2.239	7.39	993	64.2	5.6	295	13.0	0.032	0.036	0.105	2.7	3.01	0.06	0.10	1.93	<0.20	0.225	0.12	0.39	<0.10	0.225
Average		124	93.3	1 5/1	2.239	1.39	993	04.2	0.0	295	13.0	0.023	0.013	0.105	2.0	3.01	0.04	0.04	1.29	<0.20	0.225	0.12	0.39	<0.10	0.225

			_		9		SS	<u>s</u>	т	stivity	esium		≥	ate			nese				ia		ø.	lene	inzene	o.	e e	(Total)
Well	Sampling Date	Notes	Calciun		Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magn	DOC	Alkalini	Sulph	Boron	lron	Mangar	Sodium	Nitrate	Nitrite	Ammor	Z Y F	Benzer	m,p-Xylene	Ethylber	Toluene	o-Xylene	Xylene Mixture (
	(1981 - 2012) Units (2013 -)	\vdash	mg/L mg/L	-	mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
														<u> </u>	J		, , , , , , , , , , , , , , , , , , ,	Ů		Ŭ	Ĭ	Ŭ	- 10	,,,	10	,,,	1,0	10
OW5-84 OW5-84	Oct-84 Feb-85		30.5 24.5		13.0 5.5		196 159	<1.0 <1.0	8.12 7.86	500 424	29.0	1.3																<u> </u>
OW5-84	May-85	H	26.0		1.0		161	<1.0	8.18	435	23.4	0.9																
OW5-84	Aug-85		25.0		1.0		164	<1.0	8.12	400	24.6	1.9																
OW5-84 OW5-84	Feb-86 May-86	\vdash	25.5 24.5		17.0 4.0		160 159	<1.0 <1.0	8.13 8.03	393 399	23.4	1.1																
OW5-84	Aug-86		24.5		10.0		161	1.0	8.15	416	24.2	1.2																
OW5-84 OW5-84	Nov-86 Feb-87		25.5 25.5		25.5 1.0		164 163	<1.0 <1.0	8.12 8.08	396 404	24.4	0.9																
OW5-84	May-87		26.5		1.0		166	<1.0	8.05	439	24.0	2.0																
OW5-84	Aug-87		25.5		1.5		162	<1.0	8.10	400	23.8	1.3																
OW5-84 OW5-84	Nov-87 Jan-88		30.4 30.2		0.6 1.1		182 173	<1.0 <1.0	8.04 7.54	422 360	25.7 23.7	0.8																<u> </u>
OW5-84	May-88	\Box	27.3		1.0		166	<1.0	7.60	408	23.7	1.3																
OW5-84 OW5-84	Aug-88 Nov-88	H	27.6	H	1.1 0.63	\Box	166 169	<1.0 <1.0	7.70 6.81	384 406	23.5	1.4 0.8																
OW5-84 OW5-84	Nov-88	D	29.0 27.3		0.63	\vdash	169	1.0	NA	NA	22.7	0.8	1			 												
OW5-84	Feb-89		28.5		0.8		170	<1.0	7.58	390	23.9	0.7																
OW5-84 OW5-84	May-89 Aug-89		33.1 32.6		0.7 1.5		184 187	<1.0 1.0	8.27 7.60	410 411	24.5 25.5	0.8																<u> </u>
OW5-84	Nov-89	\vdash	26.7		1.2		164	<1.0	7.50	381	23.7	0.5 U																
OW5-84	Feb-90		28.1		1.6		168	<1.0	7.80	382	23.7																	
OW5-84 OW5-84	May-90 Aug-90	\vdash	27.0 27.1	\vdash	1.9		165 168	<1.0 <1.0	7.50 7.78	370 340	23.7	1.3	+															\vdash
OW5-84	Nov-90		24.9		1.2		155	3.5	8.00	800	22.4	0.8																
OW5-84 OW5-84	Feb-91 May-91		25.7 25.6		<0.1		160 163	<1.0 <1.0	8.40 7.98	363 344	23.2	2.8 0.5																<u> </u>
OW5-84	Aug-91	H	26.1		0.7		163	<1.0	6.71	479	23.8	1.2																
OW5-84	Nov-91	4	27.4		1.3		174	<1.0	7.90	370	25.5	0.5 U																
OW5-84 OW5-84	Nov-91 Dec-91	Н	26.2 29.7		0.96 1.11		169 172	<1.0 <1.0	7.90 7.83	370 349	23.1	<0.5 <0.5																
OW5-84	Feb-92	H	103		1	U	329	<1.0	7.15	1,000	17.3	1.8																
OW5-84	May-92		25.6		1.0		168	<1.0	7.95	290	25.2	0.5																
OW5-84 OW5-84	Aug-92 Nov-92	H	29.8 31.4		0.9		188 198	2.0 <1.0	7.60	720 275	27.6 29.1	0.7																
OW5-84	Feb-93		26.7		1.7		159	<1.0	7.77	260	22.4	4																
OW5-84 OW5-84	May-93 Aug-93	\vdash	24.9 26.9		0.67		154 168	<1.0 <1.0	7.90 8.20	330 400	22.3	<0.5 <0.5																
OW5-84	Apr-94	H	27.4		0.90		170	<1.0	7.70	400	24.8	<0.5																
OW5-84	Apr-94	D	26.6		0.81		164	<1.0	7.70	400	23.7	<0.5																
OW5-84 OW5-84	Sep-94 Apr-95	H	30.7 29.8		0.74 17.6		178 182	<2.0 <1.0	8.50 7.50	1,400 400	24.6 26.1	<0.5 12.5 U																
OW5-84	Sep-95		40		0.79		223	<1.0	7.80	400	30	29.6 U																
OW5-84 OW5-84	Apr-96 Sep-96		27.8 31.8		9.34 0.94		171 190	<1.0 <1.0	7.81 8.04	400 381	24.7 26.9	<0.5																<u> </u>
OW5-84	Apr-97		26.4		1.21		178	<1.0	8.60	400	27.3	<0.5																
OW5-84	Sep-97		36.4		1.34	J	226	<1.0	8.60	400	32.9	<0.5																
OW5-84 OW5-84	Sep-97 Apr-98	D	34.5 29.2	\vdash	3.1 1.38	J	229 182	<1.0 <1.0	8.60 7.80	400 404	34.8 26.6	0.8 2.6				-		-			-							
OW5-84	Sep-98		36.8		1.34		214	<1.0	7.91	369	29.7	<0.5																
OW5-84	Apr-99		31.5		1.94		190	<1.0	7.86	364	27	0.5																
OW5-84 OW5-84	Sep-99 Apr-00		30 33.4		1.75	U	173 204	<1.0 <2.0	7.83 7.77	492 434	23.7	3.3 U																
OW5-84	Apr-00	D	33.4		1.72		204	<2.0	7.77	434	29.3	1.0 U																
OW5-84 OW5-84	Sep-00	\vdash	32 34		2.55	\vdash	203 203	<2.0	7.80 7.38	425 415	29.8	2.0				-												<u> </u>
OW5-84 OW5-84	Apr-01 Sep-01	\vdash	37		<3.0	\vdash	203	<2.0 <1.0	7.38	415	32.3	1.0	+			 					 							
OW5-84	Apr-02		31.5		<3.0		197	<1.0	7.31	438	28.7	1.8 U																
OW5-84 OW5-84	Sep-02 Apr-03	\vdash	40 37	\vdash	3.7 5.75	\vdash	240 214	2.0 U	6.63 7.83	327 467	34 35	1.2 U				-					-							
OW5-84	Sep-03	1	28		5.6		212	1.0	8.27	315	23	5.7																
OW5-84	May-04	1	32.7		4.85		202	<2	8.01	466	29.2	<1.0																
OW5-84	Sep-04		32.8	Ш	5.57		203	<2	8.03	425	29.4	<1.0											l			1	l	

	1	1 1		1								_			1					_	_				1		
Well	Sampling Date	Notes	Calcium	Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	Z Z	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012	2)	mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside	Units (2013 -)	mg/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW5-84	Sep-04	D	32.1	5.57		199	<2	8.03	425	28.9	<1.0																
OW5-84	Apr-05		32.8	5.92		204	<2	7.51	470	29.6	<1.0																į .
OW5-84	Nov-05		34.8	13.7		217	<1.0	7.31	454	31.5	<1.0																į .
OW5-84	Apr-06		64.8	57		430	<1	8.49	920	65	1.0 U																į .
OW5-84	Nov-06		66	60		440	10 U	7.16	913	68	2.0																
OW5-84	Apr-07		50.3	48		330	<1	7.66	710	49	1.0																
OW5-84	Nov-07		35.8	<2		250	2 U	8.01	560	39.8	<1.0																
OW5-84	Apr-08		35.8	13		230	<1	7.67	519	-	<1.0																
OW5-84	Nov-08		41.0	15		250	2.0	7.21	560	36.6	1.0																
OW5-84	Apr-09		41.3	18.9		255	1.0	7.87	532	36.9	1.4																
OW5-84	Nov-09		40.5	16.2		247	<1.0	7.75	605	35.4	2.3																
OW5-84	Mar-10		53.7	33.8		303	<1.0	7.75	920	41.0	3.5																
OW5-84	Nov-10		39.8	17.1		251	<1.0	6.74	439	36.7	3.5																igspace
OW5-84	Mar-11		63.4	43.8		405	3.4	8.01	960	59.9	1.6																ldot
OW5-84	Dec-11		62.4	20.9		319	<1.0	7.80	611	39.5	1.1																igspace
OW5-84	Apr-12		71.3	40.1		368	<1.0	7.51	805	46.1	<1.0																igspace
OW5-84	Nov-12		66.4	21.9		325	<1.0	6.93	485	38.8	<1.0																
OW5-84	May-13		57.3	43.2		372	<1.0	7.59	829	55.6	2.3																
OW5-84	May-13	D	58.8	42.9		366	0.001			53.2	1.5																
OW5-84	Oct-13		45.0	25.7		276	<0.001	7.50	628	39.8	1.6	224	92.9	0.13	0.576	0.014	32.1										
OW5-84	Jun-14		57.2	45.3		377	<0.001	7.45	854	56.9	0.9	228	174	0.143	0.700	0.022	38.3					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Nov-14		43.9	29.8		279	<0.001	7.89	635	41.2	1.1	231	102	0.144	0.456	0.02	30.6					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Nov-14	D	44.1	29.5		280	<0.001			41.2	0.9																
OW5-84	May-15	\perp	54.4	46.7		354	<0.001	7.42	877	52.9	1.2	248	165	0.136	0.764	0.02	37.0					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Sep-15	\perp	47.7	36.2		299	<0.001	7.56	686	43.6	1.0	218	108	0.137	0.608	0.017	32.2					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Apr-16		64.1	62.7		421	<0.001	7.99	839	63.3	1.6	248	208	0.130	0.830	0.027	42.1	<0.25	<0.25	0.20	0.28	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Apr-16	D	61.8	61.4		405	<0.001			60.9	1.7	245	204	0.137	0.830	0.027	40.6	<0.25	<0.25	0.22	0.26						
OW5-84	Oct-16		44.3	32.1	-	282	<0.001	7.92	552	41.6	1.1	226	106	0.145	0.522	0.019	29.4	<0.25	<0.25	0.25	1.51	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Apr-17	\perp	49.9	37.4	-	317	<0.001	7.58	606	46.8	1.2	233	125	0.140	0.669	0.017	32.1	<0.25	<0.25	0.20	0.33	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Sep-17	\perp	44.3	33.9		288	<0.001	7.86	567	43.0	1.3	238	108	0.133	0.629	0.019	31.0	<0.25	<0.25	0.38	1.00	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Sep-17	+	44.7	34.0	1	290	<0.001	0.00	FCC	43.4	1.3	249	108	0.132	0.584	0.021	31.5	<0.25	<0.25	0.39	0.72						
OW5-84	May-18	+	60.4	52.6	+	394	.0.004	8.30	566	59.1	1.2	100	404	0.400	0.04	0.04=	04.6			0.4.1	0.04	0.00	0.00	0.46	0.00	0.40	0.00
OW5-84	Oct-18	+	47.1	33.4	+	290 388	<0.001	6.81	644 894	41.9	1.3	196	121	0.139	<0.01	0.017	31.2	-0.25	-0.25	0.14	0.31	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84 OW5-84	May-19	+	59.8	63.5	+		0.002	7.32		58.0	0.9	247 225	212 127	0.144	<0.01	0.021	36.6	<0.25	<0.25 <0.10	0.24	0.52	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20 <0.20
OW5-84	Oct-19 May-20	+	49.5 57.7	39.3 54.3	+	310 364	0.002	7.51 7.41	560 958	45.3 53.5	0.8 1.4	236	179	0.146 0.142	<0.010	0.026	31.8	<0.10	<0.10	0.07	<0.10	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW5-84	Oct-20	+	43.4	38.2	+	286	0.002	7.41	531	43.2	1.4	230	111	0.142	0.095	0.024	30.8	<0.25	<0.25	0.12	0.40	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84 OW5-84		+	55.4	52.2	+	357	0.006	7.95	704	53.0	1.1	232								-							
OW5-84 OW5-84	Jun-21 Nov-21	+	48.5	43.8	+	306	0.005	7.44	704	44.9	1.1	236	168 121	0.149 0.149	0.015 <0.010	0.011	33.4 29.3	<0.05 <0.05	<0.05	0.18	0.52	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW5-84	May-22	+	65.7	59.3	+	429	0.046	7.74	811	64.4	1.1	250	189	0.149	<0.010	0.018	40.2	<0.05	<0.05	0.22	0.33	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW5-84	Oct-22	+	59.8	46.4	+	365	0.002	7.40	692	52.4	1.1	229	135	0.146		0.034	35.7	<0.05	<0.05	0.15	0.44	<0.20	<0.20		<0.20	<0.10	<0.20
UVV5-84	OCI-22	+	J9.0	40.4	+	300	0.005	7.40	092	52.4	1.1	229	135	0.147	0.015	0.014	35./	<0.05	<0.05	0.20	0.44	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum	1	+	24.5	0.61	+-	154	0.001	6.63	260	17.3	0.3	196	92.9	0.130	0.005	0.011	29.3	0.00	0.03	0.07	0.05						$\overline{}$
Maximum		+	103	64	+-	440	10.000	8.60	1400	68	29.6	250	212.0	0.160	0.830	0.034	42.1	0.00	0.13	0.39	1.51						\vdash
Average		+	39	16.7	1-	237	0.675	7.76	522	34.1	1.8	234	143.2	0.141	0.366	0.020	34.2	<0.05	0.09	0.33	0.51	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
····	1		00	,			3.0.0			0					0.000	0.020		10.00	0.00	0.21	0.01	-0.20	-0.20		10.20	-00	10.20

				П																					Φ			a a
	Sampling	SS	E ni		Chloride		Hardness	enols	Hdplei	Field Conductivity	1agnesi um	0	llinity	hate	Ę		ganese	m.	ate	e e	mmonia		zene	,p-Xylene	Ethylbenzene	Toluene	-Xylene	Xylene Mixture (Total)
Well	Date	Note	Calcin		공		Harc	Phe	Fiel	Field	Mag	DOC	Alkal	Sulph	Borc	Lon	Man	Sodi	Nitra	Nitrite	Amn	Ι¥	Ben	Ę.	Ethy	Toll	×.	Xyle Mixt
	(1981 - 2012)		mg/L	_	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside I	Jnits (2013 -)	\vdash	mg/L	Н	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW7-91	Nov-91		79.1		10.2		392	<1.0	7.40	615	45.2	7.0																
OW7-91 OW7-91	Dec-91 Dec-91	D	84.0 90.2		8.99 8.67		445 440	<1.0 <1.0	7.30	546 546	49.7 52.9	7.5 L																
OW7-91 OW7-91	Feb-92	D	79.3		9.4		398	1.0	7.32 7.72	600	48.4	1.5																
OW7-91	Jun-92		87.2		34.0		435	<1.0	7.34	660	52.6	0.9																
OW7-91 OW7-91	Aug-92 Nov-92	5	104		19.8 17.5		515 683	<1.0 8.5	7.79 7.17	1,800 1,200	62.0 104	9.4																
OW7-91	Feb-93	3	82.3		16.1		405	<1.0	7.42	505	48.5	<0.5																
OW7-91	Feb-93	D	82.4		19.2		408	<1.0	NA	NA	49.0	<0.5																
OW7-91 OW7-91	May-93 Aug-93		95.0 90.4		42.2 27.4		444 434	<1.0 <1.0	7.40 8.20	760 900	50.3 50.7	3.6 L	'															
OW7-91	Aug-93	D	86.3		27.4		424	<1.0	NA	NA	50.6	<0.5																
OW7-91	Apr-94		96.4		20.9		464	<1.0	7.40	900	54.2	<0.5																
OW7-91 OW7-91	Sep-94 Apr-95		87.5 97.1		14.9 16.9		426 505	<2.0 <1.0	8.40 7.30	900	50.4 63.8	<0.5 1.5 J	.U															
OW7-91	Apr-95	D	102		20.6		528	<1.0	7.30	900	66.5	5.0 J	,U															
OW7-91	Sep-95	Н	108		14.3		517	<1.0	7.90	900	60	31.6	ı															
OW7-91 OW7-91	Apr-96 Sep-96	H	85.7 104	\vdash	10 15.6	\vdash	423 498	<1.0 <1.0	7.46 8.18	1,110 1,030	50.8 58	<0.5 1.5																
OW7-91	Apr-97		125		14.2		588	<1.0	8.30	1,000	67.1	1.1																
OW7-91	Sep-97	Н	111		15.6		551	<1.0	8.30	1,000	66.5	<0.5																
OW7-91 OW7-91	Apr-98 Sep-98	H	100 126		12.6 8.32		495 588	<1.0 <1.0	7.45 7.55	1,050 1,090	59.5 66.5	0.9																
OW7-91	Apr-99		121		11.9		594	<1.0	7.44	1,100	70.8	1.3																
OW7-91 OW7-91	Sep-99 Apr-00		124 116		2.7 12.1	U	588 550	<1.0 <2.0	7.28 7.32	1,250 1,100	67.4 63.2	2.8 L																-
OW7-91	Sep-00	Н	103		11.1		555	<2.0	7.46	1,070	72.3	2.0	_															
OW7-91	Apr-01		99.6		<3.0		487	<2.0	7.08	922	57.8	<0.5																
OW7-91 OW7-91	Apr-01 Sep-01	D	94.2 106		<3.0 8.78		486 553	<2.0 <1.0	7.08 7.34	922 1010	60.8 70.0	10.8																
OW7-91	Sep-01	D	102		10.3		542	<1.0	7.34	1010	69.6	1.5																
OW7-91	Apr-02		87.8		8.8		446	<1.0	6.99	1010	55	3.2	1															
OW7-91 OW7-91	Sep-02 Apr-03	Н	53 100	\vdash	7.6 8.9		388 472	<1.0	4.07 7.65	730 1010	53 66	3.0 L	1															
OW7-91	Sep-03	1	74		9.25		479	1	8.07	709	45	3.9																
OW7-91	May-04	1	90.3		12.4		450	<2	7.70	959	54.4	<1.0																
OW7-91 OW7-91	Sep-04 Apr-05	H	92.1 93.6		11.8 12.1		454 456	<2 <2	7.78 7.24	865 1040	54.4 54	<1.0																
OW7-91	Nov-05		101		17.5		468	<1.0	7.26	884	52.6	<1.0																
OW7-91 OW7-91	Apr-06		40.5 91		9.0 7.0		300	1 U		890 404	48.9 55.0	2.0																
OW7-91 OW7-91	Nov-06 Apr-07		88		9.0		450 410	<1	6.99 7.44	910	45.1	1.0																
OW7-91	Nov-07		88.8		8.0		500	3 U	7.65	940	67	<1.0																
OW7-91 OW7-91	Apr-08 Nov-08	\square	98.5 114		11.0 9.0		450 520	<1 <1	7.28 6.77	935 932	57.3	<1.0 1.0	-			-					-							
OW7-91 OW7-91	Apr-09	H	94.5		14.9	H	447	<1	7.55	552	51.3	1.6								<u> </u>								
OW7-91	Nov-09	П	99.3		11.3		462	1	7.50	990	52.1	<1.0																
OW7-91 OW7-91	Mar-10 Nov-10	\vdash	102.0 118.0		9.3 19.4	\vdash	448 548	<1.0 <1.0	7.63 6.57	1100 1020	46.8 61.5	2.5 <1.0				-				-	-				-			
OW7-91 OW7-91	Mar-11	\vdash	101		8.8	\vdash	467	<1.0	7.81	1030	52.1	2.9																
OW7-91	Dec-11		418		11		1270	<1.0	7.64	970	55.6	2.4																
OW7-91 OW7-91	Apr-12 Nov-12	H	251 346	H	10.5 7.1	\vdash	818 1080	<1.0 <1.0	7.38 6.72	1060 733	46.6 53.4	1.2				-				-								-
OW7-91	May-13		105		15.6		494	<0.001	7.26	1022	56.3	1.4																
OW7-91	Oct-13	П	92.9		9.43	Щ	443	<0.001	7.31	965	51.3																	
OW7-91 OW7-91	Jun-14 Nov-14	\vdash	84.4		5.52 5.92	\vdash	439 410	<0.001 <0.001	7.52 7.54	945 961	55.4 50.7	1.2 6.1				 				 	-				-			
OW7-91	May-15		84.5		5.70		429	<0.001	7.38	989	52.9	3.0																
OW7-91	Sep-15	П	84.3		7.05		434 419	<0.001	7.46	970	54.2	2.3																
OW7-91 OW7-91	Apr-16 Oct-16	H	79.5 60.7		4.22 4.95	\vdash	383	<0.001 <0.001	7.96 8.27	800 789	53.6 56.2	5.6 1.3								 								
OW7-91	Apr-17	П	76.0		3.20		414	<0.001	7.64	831	54.5	1.5																
OW7-91	Sep-17		72.5	Ц:	3.77		405	<0.001	7.68	798	54.4	3.9																

Well	Sampling Signate Z	Calcium	Chloride	:	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	N F	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012)	mg/L	mg/L	m	ıg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
	Jnits (2013 -)	mg/L	mg/L		ıg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW7-91	May-18	74.7	4.34		11		8.32	703	54.4	1.4																
OW7-91	Oct-18	74.4	3.92		93	<0.001	7.79	748	50.4	1.9																
OW7-91	May-19	77.5	4.56	4	13	<0.001	7.53	845	53.3	2.8	182					35.3	0.38	< 0.25								
OW7-91	Oct-19	73.7	3.99	3	96	<0.001	7.58	703	51.4	0.8	180					34.9	0.54	< 0.25								
OW7-91	May-20	74.0	3.77	3	96	<0.001	7.59	999	51.3	1.7	177					38.0	0.56	<0.25								
OW7-91	Oct-20	62.7	4.44	3	45	0.001	7.58	703	45.7	1.5	184					32.8	0.65	<0.25								
OW7-91	Jun-21	73.2	4.20	4	00	0.002	7.55	1174	52.7	2.2	177					33.8	0.64	< 0.05								
OW7-91	Nov-21	81.6	4.27	4	46	0.006			58.8	2.1	185					36.9	0.52	< 0.05								
OW7-91	May-22	Ins																								
OW7-91	Oct-22	Ins																								
Minimum		40.5	2.70	3	00	0.001	4.07	404	45.0	0.3	177					32.8	0.38	0.03								
Maximum		418	42	12	270	10.000	8.40	1800	104	31.6	185					38.0	0.65	0.13								
Average		102	11.5	4	88	0.757	7.48	911	56.3	2.4	181					35.3	0.55	0.09								

		Т																							Ф			<u>e</u>
	Sampling	tes	lcium		Chloride		Hardness	enols	Hd blei	Field	1agnesi um	ပ္က	alinity	phate	G		nganese	dium	rate	litrite	mmonia	z	nzene	,p-Xylene	Ethylbenzene	Toluene	-Xylene	Xylene Mixture (Total)
Well	Date	ž	Calciu					듄	E e		2	000	Alkal	Sulph	- Bo	Iron	Ma	Š	i ž	ž	Am	TKN	Ber	E	먎		0	ŽΞ̈́
	(1981 - 2012	-	mg/L	-	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside C	Inits (2013 -	1	mg/L		mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW8A-91	Nov-91		56.5	2	2.32		256	<1	7.30	NA	33.1	<0.5																
OW8A-91	Dec-91		82.2		3.08		438	<1	7.44	546	52.1	4.5																
OW8A-91	Feb-92	+	57.0		3.4	U	297	5.5	7.99	490	37.6	1.0	-															
OW8A-91 OW8A-91	May-92 Aug-92		79.1 86.0		9.0 4.0		412 428	<1.0 <1.0	7.50 7.37	600 1400	52.1 51.7	0.9																
OW8A-91	Nov-92		93.3		7.1		475	<1.0	7.79	555	58.6	1.2																
OW8A-91	Feb-93		73.3		14.8		372	<1.0	7.77	440	45.9	<0.5																
OW8A-91 OW8A-91	Feb-93	D	73.4 85.5		64.8 77.4	U	371 406	<1.0 <1.0	NA 7.70	NA 1200	45.7 46.8	<0.5																
OW8A-91	May-93 Aug-93		82.3		12.3		406	<1.0	7.70	800	48.9	<0.5																
OW8A-91	Apr-94		48.8		2.71		246	<1.0	7.80	600	30.1	<0.5																
OW8A-91	Sep-94		80.5		10.0		389	<2.0	8.10	800	45.6	<0.5																
OW8A-91	Sep-94	D	83.8		9.74		405	<2.0	8.10	800	47.5	<0.5	-								-							
OW8A-91 OW8A-91	Apr-95 Sep-95	+	101 90.0		15.4 38.7	\vdash	498 405	<1.0 <1.0	7.30 7.90	800 700	59.7 43.8	1.0 U									+							
OW8A-91	Apr-96	+	80.2		7.87		409	<1.0	7.90	1010	50.7	<0.5																
OW8A-91	Sep-96		103		3.04		468	<1.0	8.14	930	51.2	2.0																
OW8A-91 OW8A-91	Apr-97	+	104 106		3.26		506 485	<1.0 <1.0	8.10 7.90	900 800	59.8	<0.5																
OW8A-91	Sep-97 Apr-98	+	79.4		8.6 3.13		485	<1.0	7.53	852	53.5 52.9	<0.5 3.5	+															
OW8A-91	Sep-98		81.4		3.33		375	<1.0	7.61	656	41.6	1.1																
OW8A-91	Apr-99		110	3	3.46		495	<1.0	7.37	970	53.4	1.0																
OW8A-91	Sep-99		78.2		5.21		340	<1.0	7.54	846	35.3	2.1 U																
OW8A-91 OW8A-91	Apr-00 Sep-00	+	116 101		3.08 3.64		529 525	<2.0 <2.0	7.41 7.62	1010 990	58.1 66.3	1.2 U	-															
OW8A-91	Apr-01		97.7		18.2		453	<2.0	7.18	990	50.7	0.8																
OW8A-91	Sep-01		97.7		<3.0		471	<1.0	7.25	839	55.1	1.2																
OW8A-91	Apr-02		88.1		10.5		459	2 U		970	58.1	3.3 U																
OW8A-91 OW8A-91	Sep-02 Apr-03	+	42.0 95.0		2.3 8.6		335 476	1 U	8.02 7.53	626 1000	42.0 59.0	3.4 U	-															
OW8A-91	Sep-03	1	70.0		4.55		441	1.0	8.08	756	40.0	6.2																
OW8A-91	May-04	1	84.8		14.1		432	<2	7.76	943	53.5	<1.0																
OW8A-91	Sep-04		52.3		3.84		270	<2	7.96	600	33.8	<1.0	-															
OW8A-91 OW8A-91	Apr-05 Nov-05	+	91.2 56.2		3.01 1.54		456 275	<2 <1.0	7.46 8.14	990 679	55.5 32.6	<1.0																
OW8A-91	Apr-06		49.7		10		350	<1	8.12	970	54.5	2.0 U																
OW8A-91	Nov-06		100		6		490	16	6.97	964	59.0	2.0																
OW8A-91	Apr-07		90.3		17		440	<1	7.52	1010	51.0	2.0																
OW8A-91 OW8A-91	Nov-07 Apr-08	+	60.1 99.4		11		300 470	2 U	8.17 7.31	687 960	36.5	1.0 <1.0	-															
OW8A-91	Nov-08		113		<6		530	<1	6.79	940	60.0	1.0																
OW8A-91	Apr-09		78.6		16.2		393	<1	7.51	930	47.9	2.8																
OW8A-91 OW8A-91	Nov-09 Mar-10	+	95.5 103		<6.0 3.4	\vdash	469 460	<1.0 <1.0	7.53 7.36	970 1140	56.1 49.1	<1.0 2.2	-															
OW8A-91	Nov-10	+	97.3		3.2	\vdash	451	<1.0	7.00	930	50.5	1.7																
OW8A-91	Mar-11		105		9.4		513	<1.0	7.86	1070	60.7	3.2																
OW8A-91	Dec-11		389		6.6		1230	<1.0	7.67	1050	63.1	1.4																
OW8A-91 OW8A-91	Apr-12 Nov-12	+	230 396		3 2.5		787 1170	<1.0 <1.0	7.41 6.76	960 626	51.5 43.6	1.3	-								-							
OW8A-91	May-13	+	97.3		2.5 14.5	\vdash	489	<0.001	7.36	1022	59.8	1.3																
OW8A-91	Oct-13		103		7.02		498	<0.001	7.34	1063	58.4	1.6																
OW8A-91	Jun-14		104	1	14.5		335	<0.001	7.42	702	18.3	6.1																
OW8A-91 OW8A-91	Nov-14 May-15	+	75.1 95.0		11.4 16.5	$\vdash \vdash$	279 315	<0.001 <0.001	7.38 7.17	570 760	22.1 18.9	14.5	+															
OW8A-91 OW8A-91	Sep-15	+	95.0 NA	H^{-1}	0.01	\vdash	315	<0.001	7.17	700	10.9	5.5																
OW8A-91	Apr-16	+	85.5	1	14.1		270	<0.001	7.89	510	13.8	6.2																
OW8A-91	Oct-16		147	2	24.2		477	<0.001	7.45	881	26.7	4.8																
OW8A-91	Apr-17	+	87.3		20.7	$\vdash \vdash$	280	<0.001	7.46	550	15.0	4.2	-															
OW8A-91 OW8A-91	Sep-17 May-18	+	126 94		14.2 14.6	\vdash	394 303	<0.001	7.20 7.77	760 444	19.3 16.7	6.7 3.2																
OW8A-91	Oct-18	+	108		17.2	$\mid \uparrow \mid$	350	<0.003	7.72	302	19.6	4.8																
OW8A-91	May-19		108	1	16.7		338	0.001	6.97	824	16.7	6.1	366					21.5	0.08	<0.05								
OW8A-91	Oct-19		161	5	51.9		497	0.001	6.82	859	23.1	8.4	298					25.0	<0.25	<0.25								

Well	Sampling Sampling Date Z	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
	Units (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW8A-91	May-20	119	20.4	366	0.002	6.92	871	16.7	5.6	301					33.4	<0.25	<0.25								
OW8A-91	Oct-20	125	42.1	393	0.075	7.20	681	19.7	26.0	333					25.7	<0.25	<0.25								
OW8A-91	Jun-21	107	41.2	362	0.004	7.09	996	23.1	8.8	338					30.4	<0.05	< 0.05								
OW8A-91	Nov-21	150	35.5	476	0.038	7.12		24.6	5.6	395					30.1	<0.05	< 0.05								
OW8A-91	May-22	180	17.9	607	0.098	6.78	687	38.3	5.1	412					30.1	< 0.05	0.44								
OW8A-91	Oct-22	NA																							
Minimum		42.0	1.54	246	0.001	6.76	302	13.8	0.3	298					21.5	0.08	0.03								
Maximum		396	77	1230	16.000	8.17	1400	66	26.0	412					33.4	0.08	0.44								
Average		104	13.8	440	0.802	7.52	825	43.0	3.4	349					28.0	0.08	0.13								

Well	Sampling Date	Notes Calcium		Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	Z X	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L		mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside I	Units (2013 -)	mg/L		mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW8B-91	Apr-94	Ins																								
OW8B-91	Sep-94	Ins																								
OW8B-91	Apr-95	Ins																								
OW8B-91	Sep-95	35.9		1.62	312	<1.0	8.40	500	54.1	34 U																
OW8B-91	Apr-96	7.34		1.10	224	<1.0	8.77	587	49.9	<0.5																
OW8B-91	Sep-96	8.12	П	1.52	232	<1.0	9.21	515	51.4	17.0																
OW8B-91	Apr-97	18.5		1.19	246	<1.0	9.50	900	48.6	0.9																
OW8B-91	Sep-97	17.8		3.50	254	<1.0	10.50	500	51.0	0.8																
OW8B-91	Apr-98	7.53	۱ ،	<0.10	188	<1.0	9.25	470	41.2	5.2																
OW8B-91	Sep-98	15.0		1.11	221	<1.0	9.28	421	44.7	2.8																
OW8B-91	Apr-99	8.2		1.52	188	<1.0	9.77	432	40.7	2.0																
OW8B-91	Sep-99	7.24		1.6U	170	<1.0	9.48	518	36.8	8.8																
OW8B-91	Apr-00	5.48		1.82	194	<2.0	9.31	484	43.7	1.9 U																
OW8B-91	Sep-00	8.59		1.73	215	<2.0	9.02	473	46.9	1.6																
OW8B-91	Apr-01	20.4		<3.0	224	<2.0	8.50	496	42.1	1.4																
OW8B-91	Sep-01	16.4		3.1	205	<1.0	8.44	476	39.9	1.1																
OW8B-91	Apr-02	13.2		<3.0	183	<1.0	8.75	460	36.4	2.1 U																
OW8B-91	Sep-02	24.0		3.1	225	6.0	8.34	370	40.0	1.8 U																
OW8B-91	Apr-03	12.0		4.75	186	1.0	9.12	479	39.0	1.9																
OW8B-91	Sep-03	1 9.9		4.85	195	1.0	9.24	348	30.0	3.6																
OW8B-91	May-04	1 18.5		3.29	191	<2	8.81	502	35.3	<1.0																
OW8B-91	Sep-04	19.5		6.71	239	<2	9.84	507	46.2	<1.0																
OW8B-91	Apr-05	8.13		2.51	190	<2	8.44	551	41.1	<1.0																
OW8B-91	Nov-05	16.8		4.14	203	<1.0	8.18	467	30.1	<1.0																
OW8B-91	Apr-06	11.3		5.0	190	<1	10.69	459	40.0	1.0 U																
OW8B-91	Nov-06	27.0		6.0	270	<1	7.80	582	50.0	3.0																
OW8B-91	Apr-07	12.1		4.0	190	<1	9.18	560	38.1	1.0																
OW8B-91	Nov-07	73.0		8.0	590	270	7.15	1080	98.0	7.0																
OW8B-91	Apr-08	60.4		6	440	<1	7.29	940	-	2.0																
OW8B-91	Nov-08	74.0	T	32	440	<1	7.56	1030	61.0	2.0																
OW8B-91	Apr-09	58.8	11:	29.4	364	<1	8.09	1030	52.7	3.5																
OW8B-91	Nov-09	54.5		28.1	324	<2.0	7.76	920	45.7	4.0	1								İ							
OW8B-91	Mar-10	57.8		76.6	320	<1.0	8.09	1080	42.7	4.4	1								İ							
OW8B-91	Oct-10	Sealed	and a	abandoneo		2010; replace		B-10																		
-							-				•		•		•	•		•	•			•	•			

	Sampling	es Sium		oride	ardness	anols	Нфр	d ductivity	nesium	v	Alkalinity	ohate	uc		iganese	mni	ate	te	nonia		zene	-Xylene	thylbenzene	lene	Xylene	Xylene Mixture (Total)
Well	Date	Notes		당	l a	P. A.	Field	Field	Мас	8	A A	Sulph	Bor	Iron	Mar	Sodiu	i i	Nitrite	Am	ΙKΝ	Ben	ė,	£	亘	×.	N X X
CRA Units	(1981 - 2012)	mg/L	.	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside U	Jnits (2013 -)	mg/L		mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW8B-10	Nov-10	Dry																								
OW8B-10	Mar-11	Dry																								
OW8B-10	Dec-11	Dry																								
OW8B-10	Apr-12	130		20.6	588	<1.0	7.35	1300	64.1	4.7																
OW8B-10	Nov-12	146	-	16.0	697	<1.0	6.69	931	80.3	3.7																
OW8B-10	May-13	133		15.0	665	<0.001	7.50	1161	80.9	4.4																
OW8B-10	Oct-13	105	-	11.4	539	<0.001	7.26	1128	67.2	3.1	271	372	0.153	<0.010	0.023	45.1										
OW8B-10	Jun-14	103		10.6	545	<0.001	7.59	1112	69.8	2.4	244	358	0.145	<0.010	0.007	44.1					<0.20	<0.20	<0.10	0.93	<0.10	<0.20
OW8B-10	Nov-14	93.3	3	10.6	493	<0.001	7.35	1060	63.1	3.7	251	360	0.183	<0.010	0.004	41.6					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	May-15	94.0		10.5	487	<0.001	7.41	1052	61.2	2.2	256	344	0.143	<0.010	0.006	43.0					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Sep-15	95.4		12.5	498	<0.001	7.48	1025	63.2	1.9	249	350	0.150	<0.010	0.004	42.8					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Apr-16	94.8	3	10.5	504	<0.001	7.75	827	64.8	4.1	262	338	0.131	<0.010	0.007	43.0	0.59	<0.25	0.03	0.32	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Oct-16	87.2	2.	8.96	464	<0.001	7.77	912	59.8	2.1	254	322	0.158	<0.010	0.003	39.5	0.65	< 0.25	0.05	0.93	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Apr-17	84.2	:	7.79	454	<0.001	7.56	816	59.3	2.3	253	328	0.141	<0.010	< 0.002	39.7	0.62	<0.25	<0.02	0.25	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Sep-17	83.2	: II	8.63	451	<0.001	7.66	801	59	1.9	257	319	0.141	<0.010	0.002	41.6	0.59	<0.25	<0.02	0.21	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	May-18	81.3	3	8.67	434		8.11	669	56	1.6	214	288	0.147	<0.010	0.002	38.7					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Oct-18	80.5	,	7.59	414	<0.001	7.77	392.5	51.7	1.8	221	277	0.15	0.03	< 0.002	38.3			<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	May-19	73.5	,	8.91	391	<0.001	7.51	951	50.5	1.3	245	280	0.144	<0.010	< 0.002	36.1	0.34	<0.25	0.09	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Oct-19	75.2	!	7.94	399	<0.001	7.47	729	51.2	1.4	249	267	0.157	<0.010	< 0.002	38.0	0.34	<0.25	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	May-20	73.4		8.18	390	<0.001	7.51	962	50.3	1.9	243	275	0.13	0.014	< 0.002	41.2	0.40	<0.25	<0.02	0.17	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Oct-20	59.5	,	8.16	328	0.013	7.74	657	43.6	2.9	255	268	0.175	0.030	< 0.002	35.4	0.30	< 0.25	<0.02	0.13	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Jun-21	74.5	;	7.75	405	0.005	7.49	924	53.2	1.5	247	252	0.125	<0.010	0.004	37.2	0.36	< 0.05	<0.02	0.31	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Nov-21	72.3	П	7.72	390	0.046	7.86		50.9	1.7	252	260	0.143	<0.010	< 0.002	37.5	0.30	0.2	< 0.02	0.18	<0.20	<0.20	<0.10	0.33	<0.10	<0.20
OW8B-10	May-22	75.6	;	7.77	407	0.046	6.97	801	53.0	1.5	253	257	0.134	<0.010	0.003	38.4	0.29	< 0.05	<0.02		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW8B-10	Oct-22	79.9		7.84	411	0.040	7.33	538	51.3	3.3	250	276	0.134	0.022	0.005	38.0	0.44	<0.05	<0.02	0.70	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		59.5	;	7.59	328	0.001	6.69	393	43.6	1.3	214	252.0	0.125	0.005	0.002	35.4	0.29	0.03	0.03	0.13						
Maximum		146	-	21	697	0.500	8.11	1300	81	4.7	271	372.0	0.183	0.030	0.023	45.1	0.65	0.17	0.09	0.93						
Average		91	\top	10.2	471	0.055	7.51	893	59.3	2.5	249	304.8	0.147	0.009	0.006	40.0	0.44	0.10	0.06	0.36	<0.20	<0.20	<0.10	0.63	<0.10	<0.20

		П		П		Т		l				1	1												o o			-
	Sampling	tes	Calcium		Chloride		Hardness	enols	Hd blei	Field Conductivity	fagnesium	000	Alkalinity	Sulphate	ron	_	anganese	dium	rate	litrite	mmonia	X	nzene	,p-Xylene	Ethylbenzene	Toluene	-Xylene	Xylene Mixture (Total)
Well	Date	2		Ш				£	Ë		2		_		8	<u> </u>	Σ	တိ	ž	ž	Ā	¥	. B	E			0	⋧≘
CRA Units	(1981 - 2012 Inits (2013 -	-	mg/L mg/L	\vdash	mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
Bulliside C	11115 (2013 -	4	IIIg/L	H	IIIg/L		IIIg/L	IIIg/L		родин	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	ру/с	μg/L	µg/L	pg/L	pg/L	ру/с							
OW9A-91	Nov-91		41.4		3.44		209	<1	6.50	NA	23.6	<0.5																
OW9A-91	Dec-91		57.6	Ш	2.17		312	<1	7.53	475	37.3	6.5																
OW9A-91 OW9A-91	Feb-92 May-92	+	20.2 57.5	\vdash	7.6 3.5		135 293	1.0 <1.0	8.16 7.61	310 460	20.4 36.2	0.9																
OW9A-91	Aug-92	+	59.5	\vdash	2.0		301	<1.0	7.65	970	37.0	1.3	_															
OW9A-91	Nov-92		74.4		3.1		366	<1.0	7.74	500	43.7	0.9 U																
OW9A-91	Feb-93		67.9	Ш	3.7		325	<1.0	7.74	405	37.8	<0.5																
OW9A-91 OW9A-91	May-93 Aug-93	+	52.9 55.4	H	3.31 2.14		263 286	<1.0 <1.0	7.80 7.50	540 600	31.8 35.8	0.9 U																
OW9A-91	Apr-94	+	82.1	H	4.33		395	<1.0	7.60	800	46.1	<0.5																
OW9A-91	Sep-94		58.2	Ħ	1.76		292	<2.0	8.50	600	35.5	<0.5																
OW9A-91	Apr-95		58.9		35		292	<1.0	7.70	600	35.3	3 U																
OW9A-91	Sep-95	1	68.2	\vdash	2.56		323	<1.0	7.90	600	37.1	25.9 J																
OW9A-91 OW9A-91	Sep-95 Apr-96	D	68.6 65.6	+	2.44 10.4	\vdash	323 320	<1.0 <1.0	7.90 7.79	762	36.9 37.9	9.8 J	U .															
OW9A-91	Apr-96	D	67.4	$\dagger \dagger$	3.38	\vdash	328	<1.0	7.79	762	38.9	<0.5	1															
OW9A-91	Sep-96		62.1		1.92		312	<1.0	8.57	622	38	<0.5																
OW9A-91	Apr-97	1.	43.6	H	3.62		302	<1.0	8.20	900	46.9	1.5																
OW9A-91 OW9A-91	Apr-97 Sep-97	D	43.6 67.3	H	3.59 2.1		316 339	<1.0 <1.0	8.20 8.30	800 600	50.2 41.6	3.0 <0.5																
OW9A-91	Apr-98	+	65.5	H	2.98		330	<1.0	7.62	703	40.5	3.5																
OW9A-91	Sep-98		64.4		1.53		324	<1.0	7.94	564	39.6	0.8																
OW9A-91	Apr-99		66.5		4.74		310	<1.0	7.65	588	35	0.8																
OW9A-91	Sep-99	+	29.4	Н	1.94	U	276	<1.0	7.59	711	49.3	3.4 U																
OW9A-91 OW9A-91	Apr-00 Sep-00	+	60 60.6	\vdash	2.19 1.89		303 308	<2.0 <2.0	7.81 7.75	640 654	32.7 38.1	0.7 U																
OW9A-91	Apr-01		85.2	Ħ	6.2		426	<2.0	7.22	833	51.7	0.7																
OW9A-91	Sep-01		60.2		<3.0		308	<1.0	7.52	640	38.4	1.8																
OW9A-91	Apr-02		63.3	Ш	<3.0		322	<1.0	7.09	738	39.8	3.0 U																
OW9A-91 OW9A-91	Sep-02 Apr-03	+	33 60	H	2.1 4.35		251 327	<1.0	8.14 7.60	481 701	41 41	3.2 U																
OW9A-91	Sep-03	1	43	\vdash	3.85		307	1	8.15	476	27	9.4																
OW9A-91	May-04	1	83		7.38		409	<2	7.65	892	49	<1.0																
OW9A-91	Sep-04		59	Ш	2.64		298	<2	8.42	650	36.6	<1.0																
OW9A-91 OW9A-91	Apr-05 Apr-05	D	58 58.2	₩	2.17		292 294	<2 <2	7.35 7.35	687 687	35.7 36	<1.0																
OW9A-91	Nov-05	U	55.5	H	2.13		274	<1.0	7.14	585	32.8	<1.0																
OW9A-91	Apr-06	+	21.4	Ħ	4		220	<1	8.44	707	40	2.0 U																
OW9A-91	Nov-06		61		2		310	1 U		302	39	2.0																
OW9A-91	Apr-07	+	78	Н-	5		360	<1	7.53	753	40	2.0																
OW9A-91 OW9A-91	Nov-07 Apr-08	+	60 76.8	H	<2 4		300 370	1 U	7.84 7.53	671 835	37	<1.0 <1.0																
OW9A-91	Nov-08	+	73.4	Ħ	<6		340	<1	6.92	686	37	<1.0																
OW9A-91	Apr-09		92.4		11.2		427	<1	7.48	930	47.6	2.1																
OW9A-91	Nov-09	+	69.0	\sqcup	<6.0		325	2	7.56	785	37	2.8																
OW9A-91 OW9A-91	Mar-10 Nov-10	+	79.3 84.4	\vdash	2.6 <2.0		345 392	<1.0 <1.0	7.83 6.78	807 552	35.8 44.1	1.8 2.5	-															
OW9A-91 OW9A-91	Mar-11	+	86.2	+	2.7	\vdash	400	<1.0	7.96	878	44.1	2.3																
OW9A-91	Dec-11	ш	227	Щ	2.1		728	<1.0	7.67	748	38.8	1.4																
OW9A-91	Apr-12	П	214	П	2.5		679	<1.0	7.42	68	34.9	1.0																
OW9A-91	Nov-12	+	247	\vdash	<2.0	\vdash	764	<1.0	6.77	571	35.6	1.2	1															
OW9A-91 OW9A-91	May-13 Oct-13	+	80.5 65.4	+	4.37 2.30	\vdash	397 314	<0.001 <0.001	7.44 7.43	873 723	47.6 36.6	2.0	1															
OW9A-91	Jun-14	+	61.2	H	2.64	H	304	<0.001	7.36	740	36.6	1.5																
OW9A-91	Nov-14		57.9	Ц	3.35		285	<0.001	7.29	720	34.2	5.5																
	May-15	\bot	55.5	Щ	3.64		268	<0.001	7.41	764	31.5																	
OW9A-91 OW9A-91	Sep-15 Apr-16	+	57.5	\vdash	5.92 4.75	\vdash	273 252	<0.001 <0.001	7.27 7.62	728 584	31.4 29.0	2.9 4.9	+					-										
OW9A-91	Oct-16	+	53.1 52.3	H	3.94		252	<0.001	7.62	634	29.0	1.1	+															
OW9A-91	Apr-17	+	49.8	Ħ	3.32		253	<0.001	6.92	581	31.3	1.4																
OW9A-91	Sep-17		48.0		3.07		246	<0.001	7.49	625	30.7	3.0																
OW9A-91	May-18	$oxed{\Box}$	49.3	Щ	5.28	Ш	260	0.001	8.12	576	33.3	1.4		It is pres	umed tha	t, the sam	ples for O	W9A aı	nd OW9E	were mi	ssed lab	led in t	he field - hav	ve been cor	rected in the	nis spreads	heet	
OW9A-91	Oct-18		41.4	Ш	4.06		227	<0.001	7.88	550	29.9	2.5														l		

Well	Sampling Signate	Calcium	Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/l	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside I	Jnits (2013 -)	mg/L	mg/L	mg/l	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW9A-91	May-19	44.1	6.74	234	<0.001	7.68	659	30	2.0	197					42.3	0.76	<0.05								
OW9A-91	Oct-19	44.7	4.75	243	0.002	7.77	550	31.9	3.2	190					42.3	0.92	<0.10								
OW9A-91	May-20	INS																							
OW9A-91	Oct-20	36.6	4.82	203		8.12	488.3	27.2	1.7	207					45.1	1.82	<0.10								
OW9A-91	Jun-21	96.5	5.1	345				25.2	2.0	205					34	1.07	<0.05								
OW9A-91	Nov-21	46.6	4.73	253	0.006	7.62		33.1	1.4	212					50.9	1.38	<0.05								
OW9A-91	May-22	NA																							
OW9A-91	Oct-22	NA																							
Minimum		20.2	1.53	135	0.001	6.50	68	20.4	0.3	190					34.0	0.76	0.03								
Maximum		247	35	764	2.000	8.57	970	52	25.9	212					50.9	1.82	0.05								
Average		67	4.2	323	0.500	7.65	650	36.9	2.3	202					42.9	1.19	0.04								

Well	Sampling Sam	Calcium	Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	Z Y F	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	Units (2013 -)	mg/L mg/L	mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
Bulliside	OTING (2010 -)	IIIg/E	IIIg/E		IIIg/L	IIIg/L		рогон	IIIg/L	mg/L	IIIg/L	IIIg/L	IIIg/E	IIIg/L	IIIg/E	IIIg/L	IIIg/E	IIIg/L	mg/L	IIIg/L	pg/L	pg/L	pg/L	руг	P9/L	pg/L
OW9B-91	Nov-91	16.0	6.44		119	3	7.30	NA	17.5	<0.5																
OW9B-91 OW9B-91	Dec-91 Feb-92	22.0 51.3	4.42	U	148 263	<1 <1.0	8.22 7.65	365 449	22.2 32.8	6.0 1.2																
OW9B-91	May-92	22.7	3.9	Ĺ	145	<1.0	8.24	300	21.3	0.7																
OW9B-91 OW9B-91	Aug-92 Nov-92	20.5	2.4		141 148	<1.0 <1.0	8.17 8.07	660 340	21.7 21.5																	
OW9B-91	Feb-93	19.2	3.8		121	<1.0	8.28	250	17.8	3																
OW9B-91	May-93	17.1	1.98		125	<1.0	8.6	350	<0.5	20																
OW9B-91 OW9B-91	Aug-93 Apr-94	16.8 19.3	1.51 1.55		120 126	<1.0 <1.0	8.5 8.40	400 300	<0.5 18.8	19 <0.5																
OW9B-91	Sep-94	20.2	0.88		126	<2.0	8.70	400	18.4	<0.5																
OW9B-91	Apr-95	19.2	17		134	<1.0	8.20	400	20.8	6 L	1															
OW9B-91 OW9B-91	Sep-95 Apr-96	29.4 15.6	1.12		169 114	<1.0 <1.0	8.10 8.22	400 390	23.2 18.2	22 t	'															
OW9B-91	Sep-96	19.2	1.2		129	<1.0	8.33	371	19.7	13																
OW9B-91 OW9B-91	Apr-97	20.1	2.79		134	<1.0	8.70	400	20.4	0.9 2.6														<u> </u>		
OW9B-91	Sep-97 Apr-98	19.2 16.5	1.48		143 120	<1.0 <1.0	8.70 8.21	400 389	23.0 19.1	2.6																
OW9B-91	Sep-98	22.4	1.31		148	<1.0	8.19	340	22.4	0.5																
OW9B-91 OW9B-91	Apr-99	22.4	5.31		151	<1.0	8.18	361	23.2	0.6																
OW9B-91	Sep-99 Apr-00	17.2 17.5	2.63	U	115 128	<1.0 <2.0	8.05 8.38	435 404	17.5 20.4	3.0 t	'															
OW9B-91	Sep-00	20.9	4.16		142	<2.0	8.18	408	21.9	2.1																
OW9B-91 OW9B-91	Apr-01 Sep-01	19.3 16.8	<3.0 <3.0		135 130	<2.0 <1.0	7.81 8.22	393 398	21.0 21.4	2.5 1.0																
OW9B-91	Apr-02	16.8	<3.0		124	<1.0	7.61	397	20.0	0.8																
OW9B-91	Sep-02	14.0	3.3		121	<1.0	5.94	312	21.0	1.1 L	I															
OW9B-91 OW9B-91	Apr-03 Sep-03 1	18.0 13.0	4.15 4.2		132 128	1.0	8.22 8.34	400 284	22.0 15.0	2.4 6.2																
OW9B-91	Sep-03 D,1	14.0	4.15		128	1.0	8.35	284	15.0	5.2																
OW9B-91	May-04 1	14.7	2.44		115	<2	8.30	410	19.1	<1.0																
OW9B-91 OW9B-91	Sep-04 Apr-05	17.8 14.1	5.71 2.59		123 111	<2 <2	8.55 8.22	355 397	19.1 18.4	<1.0 <1.0																
OW9B-91	Nov-05	16.8	4.32		122	<1.0	7.57	373	19.3	<1.0																
OW9B-91	Nov-05 D	17.8	4.40		124	<1.0	7.57	373	19.4	<1.0																
OW9B-91 OW9B-91	Apr-06 Nov-06	37.5 19.0	7		230 140	<1 <1	8.84 7.79	623 568	32.4 23.0	1.0 L	1															
OW9B-91	Apr-07	15.3	8		120	<1	8.28	430	19.5	<1.0																
OW9B-91	Nov-07	17.6	10		130 130	2	U 8.42 8.57	457	21.3																	
OW9B-91 OW9B-91	Apr-08 Nov-08	14.4 21.5	10	-	160	<1 <1	7.49	534 530	25.0	<1.0 1.0																
OW9B-91	Apr-09	14.7	13.7		131	2	8.32	479	22.9	1.1																
OW9B-91 OW9B-91	Nov-09 Mar-10	19.4 31.4	18.1 39.9		152 209	1 <1.0	8.12 8.11	651 950	25.1 31.7	1.7 3.3																
OW9B-91	Nov-10	24.5	25.4		184	<1.0	7.07	553	29.8	2.1																
OW9B-91	Mar-11	18.2	21.8		147	<1.0	8.44	619	24.6	1.6																
OW9B-91 OW9B-91	Dec-11 Apr-12	143 128	28.3 176		503 621	<1.0 <1.0	8.16 7.43	568 1640	35.4 72.8	2.1 4.1																\vdash
OW9B-91	Nov-12	127	161	\vdash	596	<1.0	6.88	48	68.0	8.8																
OW9B-91	May-13	518	192		1940	<0.001	7.30	1450	156	6.1																
OW9B-91 OW9B-91	Oct-13 Jun-14	99.7 117	194 257	1-	505 563	<0.001	6.82 6.87	1347 1573	62.2 65.7	7.5 4.4																
OW9B-91	Nov-14	112	302		542	<0.001	6.78	1590	63.6	5.8																
OW9B-91	May-15	129	311		586	<0.001	6.96	1628	64.2	3.9	329	120	0.336	2.54	0.101	114					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91 OW9B-91	May-15 D Sep-15	107 152	309 402	1	515 674	<0.001	7.49	1763	60.3 71.5	3.9 4.5	347	106	0.391	3.11	0.126	113					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	Sep-15 D	160	426		703	<0.001			73.8	4.7		100				110									30.10	
OW9B-91	Apr-16	115	304		519	<0.001	6.95	1371	56.3	3.9	285	117	0.285	2.52	0.099	97.5	<0.25	<0.25	0.58	0.56	<0.20	<0.20	<0.10	0.38	<0.10	<0.20
OW9B-91 OW9B-91	Oct-16 Apr-17	180 122	327 292	-	769 539	<0.001	6.87 6.83	1589 1234	77.7 57.0	6.0 3.9	330 278	318 153	0.434	3.64 2.35	0.155 0.107	107 98.9	<0.5 <0.25	<0.5 <0.25	0.12	1.03 0.85	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.24	<0.10 <0.10	<0.20 <0.20
OW9B-91	Apr-17 D	123	293		543	<0.001			57.3	3.8	277	148	0.326	2.38	0.107	98.0	<0.25	<0.25	0.39	0.86		10.20	10.10		-5.10	
OW9B-91	Sep-17	107	219		474	<0.001	6.94	1114 637	50.3 34.0	5.2 2.2	375	107	0.382	2.32	0.111 OW9A ar	96.5	<0.25	<0.25	0.32	0.63	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling sp	Calcium	<u> </u>	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	1
Burnside I	Jnits (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW9B-91	Oct-18	69.2	140	335	<0.001	7.66	855	39.5	3.1	235	86.2	0.322	<0.01	0.029	81.7			0.12	0.39	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	May-19	55.1	151	310	<0.001	7.38	1028	41.8	2.2	260	111	0.705	<0.01	0.018	76.9	< 0.25	< 0.25	0.12	0.38	<0.20	< 0.20	<0.10	< 0.20	< 0.10	<0.20
OW9B-91	Oct-19	44.8	106	259	<0.001	7.54	695	35.8	2.6	223	86.9	0.495	<0.010	0.026	77.7	<0.25	<0.25	0.24	<0.10	<0.20	<0.20	0.12	0.47	<0.10	<0.20
OW9B-91	May-20	29.9	125	206	<0.001	7.73	1043	31.9	2.6	235	104	0.351	0.031	< 0.002	85.6	<0.25	<0.25	0.03	0.17	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	Oct-20	22.8	82.3	165	0.003	7.54	695	26.3	2.1	196	80.7	0.413	0.012	0.003	75.4	<0.10	<0.10	<0.02	0.16	<0.40	< 0.40	<0.20	<0.40	<0.20	<0.40
OW9B-91	Jun-21	24.1	88.8	191	0.018	8.03	928	31.7	1.6	190	81.9	0.329	0.054	0.009	76.4	<0.05	<0.05	0.02	0.37	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	Nov-21	54	113	296	0.042	7.62		39.2	2.3	255	74.6	0.342	<0.010	0.018	74.5	<0.05	<0.05	0.17	0.39	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	May-22	81.7	131	390	0.092	7.02	528	45.2	2.4	284	77.7	0.279	0.011	0.046	76.4	<0.05	<0.05	0.19		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW9B-91	Oct-22	73	116	355	0.012	5.81	1090	41.9	2.9	277	91.3	0.327	0.020	0.039	80.6	<0.05	<0.05	0.13	0.63	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		13.0	0.88	111	0.001	5.81	48	15.0	0.3	190	74.6	0.279	0.005	0.003	74.5	0.00	0.03	0.01	0.05						
Maximum		518	426	1940	3.000	8.84	1763	156	22.0	375	318.0	0.705	3.640	0.155	114	0.00	0.25	0.58	1.03						
Average		54	81.9	275	0.502	7.84	652	34.6	3.5	274	116.5	0.377	1.188	0.066	89.4	<0.05	0.10	0.20	0.50	<0.20	<0.20	0.12	0.36	<0.10	<0.20

		П	1			1	Т								T										Φ			- F
Well	Sampling Date	lotes	Salcium	:	Chloride	lardness		Phenois	Hd blei	ield conductivity	1agnesium	DOC	ılkalinity	Sulphate	toron	LO.	fanganese	mnipo	litrate	litrite	mmonia	Z X	enzene	.p-Xylene	thylbenzen	oluene	-Xylene	Xylene Mixture (Total)
CRA Units		2	mg/L	mg/l		mg	/L	μg/L	ш	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			4	_	mg/L	mg/L	тg/L	mg/L	mg/L	XZ
Burnside L	Inits (2013 -)	\vdash	mg/L	mg/l	-	mg	/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW15-91	Nov-91		22.1	6.6		16		1	7.30	NA	23.7	<0.5																
OW15-91 OW15-91	Dec-91 Feb-92		25.4 20.1	3.75	5	16 J 15		1 <1	7.99 8.67	369 320	28.6 25.0	<0.5																<u> </u>
OW15-91	May-92		21.9	7.8		15		1.0	8.51	300	25.0	0.8																
OW15-91	Aug-92	Н	20.1	4.0		16		<1	8.30	660	27.2	1.1																
OW15-91 OW15-91	Nov-92 Feb-93		21.0 19.5	4.3		15 14		<1 <1	8.10 8.32	585 220	25.6 22.5	0.7 <0.5																
OW15-91	May-93	Ш	16.9	2.24		14		<1	8.60	340	25.0	1.6	U															
OW15-91 OW15-91	Aug-93 Apr-94		18.4 17.4	2.1°		14		<1 <1	8.20 8.70	300 400	23.5	<0.5 <0.5																-
OW15-91	Sep-94		20.2	2.19	9	13	8	<2	8.80	400	21.4	<0.5																
OW15-91 OW15-91	Apr-95 Sep-95		19.1 27.8	15.2		14		<1 <1	8.00 8.10	400 300	24.6	13 46.7																
OW15-91	Apr-96		17.8	2.04		13		2	8.22	384	21.2	<0.5	U															
OW15-91	Sep-96		20.0	2.19		14		<1	8.42	364	23.8	2.0																
OW15-91 OW15-91	Apr-97 Sep-97		17.8 23.8	1.39		12		<1 <1	8.50 8.40	300 400	19.7 27.9	1.9 <0.5																
OW15-91	Apr-98		16.3	2.09		13		<1	8.28	371	22.1	3.5																
OW15-91 OW15-91	Sep-98 Apr-99		20.9 17.3	1.68		15		<1 <1	8.19 8.36	346 339	24.7	0.9 1.6																
OW15-91	Sep-99		15.7	7.5		11	8	<1	8.13	369	19.2	2.9	U															
OW15-91 OW15-91	Apr-00 Sep-00		18.6 20.4	2.6		15 15		<2 <2	8.35 8.10	375 382	25.1 25.9	4.5 0.8																
OW15-91	Sep-00		20.3	3.12		15		<2.0	8.10	382	25.5	1.4																
OW15-91 OW15-91	Apr-01		17.7 16.9	<3 <3		14		<2 <1	7.95 7.88	345 367	25.3 25.0	<0.5																
OW 15-91	Sep-01 Apr-02		12.9	<3		12		2 U	7.73	361	21.6	1.1	U															-
OW15-91	Sep-02		17.0	2.4		15		2	7.34	265	28.0	3.1		40.4	0.44	0.4	0.0000	44					0.0005	0.0005	0.0005	0.0005	0.0005	
OW15-91 OW15-91	Apr-03 Sep-03	1	16.0 19.0	4.3		14		1.0	8.13 8.31	385 260	25.0 25.0	1.0 5.7	194 207		0.41	0.1	0.0032	44					<0.0005 <0.0005	<0.0005	<0.0005	<0.0005 <0.0005	<0.0005 <0.0005	
OW15-91	May-04	1	16.6	2.4		13		<2	8.17	397	22.8	<1.0	-	-	-	-	-						-	-	-	-	-	
OW15-91 OW15-91	Sep-04 Apr-05		20.1	2.19	9	14 15		<2 <2	8.44 7.97	344 370	23.1	<1.0 <1.0	202 188		0.384 0.296	0.154 0.076	0.01	40.4					<0.00004 <0.00004	<0.0001	<0.00005	0.0006	<0.00004 <0.00004	
OW15-91	Nov-05		20.4	2.6		14	4	<1	7.70	339	22.7	<1.0	204	14.5	0.222	0.133	0.00792	37.5					<0.00004	0.00015	0.00005	0.00009	0.00005	
OW15-91 OW15-91	Apr-06 Nov-06		15.6 20.0	5		14 16	_	1 U		376 397	24.2	2.0 1.0	U 190 210		0.4	<0.05 <0.05	0.003	39.9 48					<0.0005 <0.5	<0.001	<0.0005 <0.5	<0.0005 <0.5	<0.0005 <0.5	
OW15-91	Apr-07		15.8	7		11		6 J	8.14	356	17.5	<1.0	180		0.32	<0.05	0.006	41.1					<0.5	<1	<0.5	<0.5	<0.5	
OW15-91	Nov-07		22.8 15.2	11		15 12		1 U	8.26 8.22	554 394	22.8	<1.0	200		0.27	<0.05	0.008	60					<0.5	<1	<0.5	<0.5	<0.5	
OW15-91 OW15-91	Apr-08 Nov-08		92.9	131	-	41		<1	7.11	864	42.2	<1.0 2.0	210	17	0.39	<0.05	0.007	53					<0.5	<1 -	<0.5	<0.5	<0.5	
OW15-91	Apr-09		27.0	16.4		16		9	7.63	454	22.6	2.8	202		0.304	<0.050	0.104	47.2					<0.50	<1.0	<0.50	<0.50	<0.50	
OW15-91 OW15-91	Nov-09 Mar-10		23.5 19.3	6.2		14		28 60	7.86 8.13	528 447	20.5 16.5	<1.0 1.5	211 209	36.3	0.374	<0.050	0.0480 0.0298	50.3 43.0					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW15-91	Nov-10		18.5	10.0)	12	3	<5	7.49	373	18.6	1.2	J 212	28	0.408	0.329	0.0445	062					<0.50	<1.0	<0.50	1.07	<0.50	
OW15-91 OW15-91	Nov-10 Mar-11	D	17.4 18.6	10.7 7.4		12 12		<5 3.7	7.49 8.26	373 442	20.8 19.2	5.7 1.7	J 214 214		0.475	0.405 <0.050	0.0516	65.8 46.2					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	1.02 <0.50	<0.50 <0.50	
OW15-91	Dec-11		29.8	6.1		15	1	<1.0	8.44	424	18.5	1.3	196	19.1	0.517	0.099	0.0097	57.5					<0.50	<1.0	<0.50	<0.50	<0.50	
OW15-91 OW15-91	Apr-12 Nov-12		26.5 29.2	3.6		13 15		2.0 <1.0	8.05 7.35	432 423	17.1 19.4	1.0 <1.0	200 229		0.254	0.122 0.123	0.0054	40.6 66.8					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW15-91 OW15-91	May-13	\forall	98.8	60.0		43		<0.001	7.78	703	46.0	3.9	229	29.5	0.537	0.123	0.0076	00.8					<0.50	<1.0	<0.50	<0.50	<0.50	
OW15-91	Oct-13		35.3	70.0)	24	1	<0.001	7.72	740	37.1	3.4	220		0.375	0.051	0.042	66.3					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91 OW15-91	Jun-14 Jun-14		33.5 32.4	50.9		24		<0.001 <0.001	7.77	684	38.0 36.9	2.1	220	66.9	0.337	0.404	0.025	52.4					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Nov-14		31.3	64.8	3	22	7	<0.001	7.79	688	36.2	3.2	214		0.393	0.226	0.040	56.2					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91 OW15-91	May-15 Sep-15		35.1 42.3	99.0		24 29		<0.001 <0.001	7.59 7.69	743 808	37.8 46.2	1.9 2.1	235 236		0.379		0.026	54.1 60.5			-		<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW15-91	Apr-16		44.1	127		31	0	<0.001	7.64	714	48.6	2.4	264	56.1	0.329	0.403	0.034	60.8		<0.25	0.16	0.25	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Oct-16		48.7	142		34		<0.001	7.65	878	53.1	3.8	278		0.566	0.501	0.070	63.4	<0.25	<0.25	0.25	0.40	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91 OW15-91	Oct-16 Apr-17		49.8 51.2	142		34		<0.001	7.38	842	54.2 54.6	4.2 2.3	270 259		0.561	0.5 0.498	0.068	64.1	<0.25 <0.25	<0.25 <0.25	0.24	0.56	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Sep-17		53.0	148	3	36	6	<0.001	7.60	888	56.8	2.8	280	88.5	0.608	0.634	0.039	71.9	<0.25	<0.25	0.18	0.37	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91 OW15-91	May-18 Oct-18	\vdash	31.7	60.8 59.8		22		<0.001	8.30 7.70	566 562	34.1	1.5	217 207	51.4 45.3	0.677	0.12 <0.01	0.014	64.1 57.4			<0.02	<0.10	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20

Well	Sampling st Date S	Calcium		Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg	/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside	Jnits (2013 -)	mg/L	mg	/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW15-91	May-19	27.8	46	.4	176	<0.001	7.85	561	25.8	1.1	221	36.3	0.619	<0.01	0.005	54	0.2	<0.05	0.09	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Oct-19	27.7	40	.6	172	<0.001	7.47	489	24.9	2.4	220	50.9	0.910	<0.010	0.017	60.9	0.11	< 0.05	<0.02	<0.10	<0.20	<0.20	< 0.10	<0.20	<0.10	<0.20
OW15-91	May-20	27.3	34	1	165	<0.001	7.75	589.8	23.4	1.4	215	34.8	0.550	0.013	0.009	56.6	0.12	<0.05	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Oct-20	22.2	43	.6	148	0.003	8.32	451	22.4	1.7	214	55.8	0.927	0.035	0.020	58.7	0.13	< 0.05	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Jun-21	22.5	23	.4	149	0.003	8.01	620	22.6	1.1	216	29.4	0.770	<0.010	0.009	51.6	0.06	< 0.05	0.04	0.64	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Nov-21	25.0	27	.1	163	0.072	7.92		24.4	1.2	219	31.7	0.537	0.012	0.035	46	0.07	< 0.05	0.14	0.15	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	May-22	29.8	32	.7	190	0.018	7.40	574	28	1.2	232	33.7	0.423	0.013	0.039	44.7	0.09	< 0.05	<0.02		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW15-91	Oct-22	36.7	47	.1	224	0.006	6.94	567	32.2	2.6	238	41.2	0.437	0.026	0.053	48.6	<0.05	< 0.05	0.06	0.54	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		12.9	1.3	39	110	0.001	6.94	220	16.5	0.3	180	13.8	0.220	0.005	0.003	37.5	0.06	0.03	0.01	0.05						-
Maximum		99	14	9	436	60.0	9.16	888	57	46.7	280	88.5	0.927	0.634	0.104	72	0.20	0.13	0.25	0.64						
Average		27	28	.8	180	2.176	8.00	471	27.7	2.4	219	39.0	0.453	0.156	0.026	53.4	0.11	0.06	0.10	0.27	<0.20	0.00015	0.00005	0.52	0.00005	<0.20

		ø	E S	oride		Hardness	enols	Hd	luctivity	nesium		inity	Sulphate	c		ganese	Ę	Đ.	Ф	ionia		eue	p-Xylene	Ethylbenzene	oluene	ene	ne ire (Total)
Well	Sampling Date	Notes	Calcin	Chlo		Hard	Pher	-ield	Field	Magr	000	٩lkal	lding	3010	5	Mang	Sodiu	Zitra	Zitrite	√mmo	Ϋ́	3enz	e,	Ith I	rolue	o-Xyler	Xylene Mixture
CRA Units	(1981 - 2012)		mg/L	mg/L	-	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		_			mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside U	Jnits (2013 -)		mg/L	mg/L	1	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW17-91	Dec-91		100	8.35		516	<1	7.97	643	72.1	<0.5																
OW17-91	Feb-92		64.1	6.3		412	<1.0	8.91	568	61	1.2																
OW17-91	May-92		72.9	5.6		444	<1.0	8.76	493	63.6	1.2																
OW17-91	Aug-92	\vdash	74.6	5.2		447	1.0	7.87	1340	63.3	1.4																
OW17-91	Nov-92	\vdash	101	5.6		555	<1.0	7.76	695	73.2	1.0																-
OW17-91	Feb-93	\vdash	95.7	7.4		519	<1.0	7.59	550	68.1	<0.5 4.3	.+	+				-			-	-			-			\vdash
OW17-91	May-93	++	95.7	5.73		531	<1.0	7.70	840	70.9		'	1							-							
OW17-91 OW17-91	Aug-93		98.6 89.4	4.48 4.49		531 488	<1.0 <1.0	7.80 7.50	900 900	69.1 64.2	<0.5 <0.5	-	1				-			-	-						
OW17-91 OW17-91	Apr-94 Sep-94		78.8	2.88		488	<2.0	8.30	800	58.8	<0.5																-
OW17-91	Apr-95	+	52.7	17.1		330	<1.0	7.70	500	48.3	13 L																
OW17-91	Sep-95	+	65.2	6.28		374	<1.0	7.60	700	51.3	42.4																-
OW17-91	Apr-96		36.3	1.19		222	<1.0	7.89	569	31.9	<0.5	'															-
OW17-91	Sep-96		70.8	10.5		408	<1.0	7.03	707	56.1	5.5																
OW17-91	Apr-97	+	35.5	1.20		229	<1.0	8.40	500	34	<0.5																
OW17-91	Sep-97		46.9	1.48		284	<1.0	8.40	500	40.5	0.8																
OW17-91	Apr-98		36.8	1.17		222	<1.0	7.76	461	31.5	1.8																
OW17-91	Sep-98		44.4	1.73		257	<1.0	7.81	406	35.5	1.1																
OW17-91	Apr-99		41.1	5.88		240	<1.0	7.70	546	33.3	1																
OW17-91	Sep-99		79.4	37.8		443	<1.0	7.6	940	59.5	3.4 (,															
OW17-91	Apr-00		90.8	28.8		505	<2.0	7.55	882	67.6	2.6																
OW17-91	Sep-00		79.3	30.2		484	<2.0	7.49	828	69.4	4.9																
OW17-91	Apr-01		88.88	44.5		513	<2.0	7.12	920	70.8	1.1																
OW17-91	Sep-01		90.1	63.3		519	<1.0	7.49	865	71.3	2.8																
OW17-91	Apr-02		106	65.5		614	<1.0	6.88	1170	84.9	2.1	1															
OW17-91	Apr-02	D	114	80.7		662	2 U	6.88	1170	91.7	2.4																
OW17-91	Sep-02		140	76		700	<1.0	6.43	647	85	5.2 L	ı															
OW17-91	Apr-03		140	67.3		625	1	7.47	1040	96	4.3																
OW17-91	Apr-03	D	130	64.4		627	1	7.47	1040	92	5.2																
OW17-91	Sep-03	1	77	50		507	2	7.62	754	49	8.7																
OW17-91	Apr-04	1	75.8	40.2		409	<2	7.66	853	53.4	<1.0																
OW17-91	Apr-04	1	77.9	44.2		421	<2	7.65	865	54.9	<1.0																
OW17-91	Sep-04	Ш	111	95.2		578	<2	8.00	940	73.2	<1.0		1														
OW17-91	Apr-05	Ш	75	29.4		261	<2	7.33	560	18	19																
OW17-91	Nov-05	\perp	101	120		493	<1.0	6.43	1,060	58.7	10																
OW17-91	Apr-06		83.6	77		440	<1	8.13	970	55.4	10		1														
OW17-91	Nov-06		sealed a	nd abandone	ed Sep	otembe	er 11, 2006						1		1									l			

				1				1			_						1				I		1	ı	Г	
	Sampling	otes alcium		Chloride	lardness	Shenols	Hd bH	ield	agnesium	000	Jkalinity	Sulphate	oron	LO CO	anganese	odium	trate	litrite	nmonia	Ş	enzene	,p-Xylene	thylbenzene	oluene	.Xylene	Xylene Mixture (Total)
Well CRA Units	Date (1981 - 2012)	ヹ mg/l		mg/L	mg/L	Δ. µg/L	ΙĒ	μS/cm	 mg/L	mg/L	₹ mg/L	ன் mg/L	mg/L	mg/L	mg/L	が mg/L	Ž	Ž	Ā	Ē	mg/L	mg/L	mg/L	mg/L	mg/L	ŹΣ
	Jnits (2013 -)	mg/l		mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW21-91	Feb-92	57.6	_	55.9	347	<1.0	8.75	320	49.2	0.8																
OW21-91 OW21-91	May-92 Aug-92	20.2		22.2 21.3	191 222	1.0 2.0	8.92 8.53	392 1050	34.0 34.8	1.4																
OW21-91	Nov-92	50.4		43.4	271	3.5	7.85	430	35.2	2.3																
OW21-91	Feb-93	41		50.6	269	<1.0	8.11	430	40.4	3.0																
OW21-91 OW21-91	May-93 Aug-93	33.2		27.4 25	241 260	<1.0 <1.0	8.50 8.20	560 600	38.5 39.7	4.9 L	-															
OW21-91	Apr-94	27.0)	42.3	218	<1.0	8.40	500	36.7	<0.5																
OW21-91	Sep-94	28.8		12.6	214	<2.0	8.90	500	34.4	<0.5																
OW21-91 OW21-91	Apr-95 Sep-95	42.9		11.7 5.05	164 278	<1.0 <1.0	8.30 8.10	400 500	39.2 41.4	13.5 L																
OW21-91	Apr-96	15.9	9	29.4	188	<1.0	8.84	582	35.9	<0.5																
OW21-91 OW21-91	Sep-96	33.2		16.3 29.8	246 285	<1.0 3	8.31 9.10	528 60	39.7 50.5	6.5 1.0	-															
OW21-91 OW21-91	Apr-97 Sep-97	29		29.8	250	<1.0	7.70	800	43.1	0.8	+															
OW21-91	Apr-98	21.4	1	24.4	197	<1.0	8.54	521	34.9	5.2																
OW21-91 OW21-91	Sep-98 Apr-99	33.2 67.2		13.6 123	256 340	<1.0 <1.0	8.28 8.91	473 1010	42.0 41.8	0.7 3.0	-															
OW21-91 OW21-91	Sep-99	48		183	401	<1.0	8.02	1400	68.3	6.8																
OW21-91	Apr-00	79.6		145	447	<2.0	8.13	1310	60.3	1.8 L																
OW21-91 OW21-91	Sep-00 Apr-01	77.		122 121	459 418	<2.0 <2.0	7.83 7.58	1220 1070	64.4 54.4	3.8 1.7	-															
OW21-91	Sep-01	88.		189	510	<1.0	7.66	1300	70.1	3.5																
OW21-91	Apr-02	84.		140	446	<1.0	7.45	1190	57.4	3.3 L																
OW21-91 OW21-91	Sep-02 Apr-03	120 94		140 136	604 478	<1.0 1.0	6.80 7.87	930 1220	74.0 59.0	4.9 L	260	194	0.074	0.22	0.0081	96					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW21-91	Sep-03	1 90		126	448	1.0	8.14	847	55.0	9.2	271	167	0.073	0.52	0.011	88					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW21-91	May-04	1 90		73.7 87.5	421	<2	7.88	1030 1170	47.6	<1.0	270	-	- 0.045	0.038	- 0.000	80.4					<0.00004	- 0.0004		0.0004	<0.00004	
OW21-91 OW21-91	Sep-04 Apr-05	133		338	505 619	<2 <2	8.50 7.61	1710	62.4 69.6	<1.0 <1.0	200	272 169	0.015	0.038	<0.002	112					<0.00004	<0.0001	<0.00005		<0.00004	
OW21-91	Nov-05	108	3	237	484	<1.0	7.22	1400	52.1	<1.0	215	171	0.0572	0.323	0.00838	110					0.00005	<0.0001	0.00006	0.00017	0.00004	
OW21-91 OW21-91	Apr-06 Nov-06	119		176 145	510 500	2 U	8.43 7.20	1320 1190	52.1 54.0	1.0 L	280 320	197 162	0.18 <0.05	0.17 <0.05	0.005	106 97					<0.0005 <0.5	<0.001 <1	<0.0005 <0.5	<0.0005 <0.5	<0.0005 <0.5	
OW21-91	Apr-07	119		168	490	<1	7.60	1310	46.7	2.0	300	196	<0.05	<0.05	0.003	66					<0.5	<1	<0.5	<0.5	<0.5	
OW21-91	Nov-07	185		556	940	2 U	7.82	1430	115.0	2.0	250	273	0.06	<0.05	0.01	154					<0.5	<1	<0.5	<0.5	<0.5	
OW21-91 OW21-91	Apr-08 Nov-08	133		325 224	520 460	<1 <1	7.92 7.11	1570 1500	33.9	3.0	240	122	<0.05	<0.05	0.015	110					<0.5	<1	<0.5	<0.5	<0.5	
OW21-91	Apr-09	119		291	483	<1	7.55	1550	45.1	2.9	275	165	<0.050	<0.050	0.0089	123					<0.50	<1.0	<0.50	<0.50	<0.50	
OW21-91	Nov-09	121		209	532	<1.0	7.86	1260	56.0	3.0	315	232	0.063	<0.050	0.0078	109					<0.50	<1.0	<0.50	<0.50	<0.50	
OW21-91 OW21-91	Mar-10 Nov-10	123		226 229	451 619	90 8.0	7.89 7.36	1620 1180	34.7 73.7	2.8 3.7	297 317	172 168	<0.050 0.065	0.503	0.0107 0.0217	094 152					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW21-91	Mar-11	96		201	423	1.7	8.16	1360	44.4	2.8	310	110	<0.050	<0.050	0.0049	96.6					<0.50	<1.0	<0.50	<0.50	<0.50	
OW21-91	Dec-11	117 167		72 379	398 666	<1.0 <1.0	7.67 0.57	853 2050	25.8 60.5	3.4	352	102	<0.050	<0.050	0.0020	58.2					<0.50	<1.0	<0.50	<0.50	<0.50	
OW21-91 OW21-91	Apr-12 Nov-12	202		365	746	26	6.87	1810	58.7	3.0	271 294	266 189	<0.050	<0.050 <0.050	0.0096 <0.0010	124 146					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW21-91	Nov-12	D 185		364	693	5	6.87	1810	56.4	3.3	287	189	<0.050		<0.0010	146					<0.50	<1.0	<0.50	<0.50	<0.50	
OW21-91 OW21-91	May-13 Oct-13	114		204 317	476 533	0.002	7.94 7.17	1373 1430	46.5 47.0	3.5	249	133	0.084	0.445	0.016	105					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91 OW21-91	Jun-14	101		228	483	0.022	7.17	1430	56.1	2.4	231	174	0.084	0.030	0.004	99.9					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	Nov-14	125	5	224	455	<0.001	7.05	1630	34.6	3.7	232	93.1	0.161	0.162	0.007	55.6					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91 OW21-91	May-15 Sep-15	119		344 578	551 798	0.028 0.023	7.75 8.44	1232 1525	61.7 87.1	2.7	206 193	183 191	0.114 0.167	0.226 0.253	0.005	104 128					<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW21-91	Apr-16	137		521	631	<0.023	7.83	1505	70.2	2.8	171	109	0.164	0.233	0.005	112	<0.5	<0.5	0.04	0.18	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	Oct-16	104	ļ.	368	589	<0.001	6.91	1438	80.0	3.0	138	226	0.177	0.326	0.007	102	<0.25	<0.25	0.04	0.38	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91 OW21-91	Apr-17 Sep-17	121 85.1		499 365	572 453	0.013 0.006	7.62 8.24	1577 1271	65.5 58.4	2.7 3.5	125 155	130 160	0.211	0.246	0.007	140	<0.25 <0.25	<0.25	<0.02	0.20	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW21-91	May-18	72.4		257	402	3.000	8.78	991	53.7	2.5	173	163	0.213	0.033	0.003	116	NO.25	0.41	\U.UZ	0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	Oct-18	88.3		271	447	0.003	7.85	1282	54.9	3.0	210	122	0.237	<0.01	0.004	115	0.05	4.00	<0.02	0.15	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91 OW21-91	May-19 Oct-19	71.2 81.3		299 252	406 447	<0.001 0.002	7.7 7.66	1200 1138	55.4 58.9	2.6	213	110 152	0.166 0.216	<0.01	0.003	107	<0.25 <0.25	1.96	<0.02	0.56 <0.10	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW21-91	May-20	60.		251	373	0.002	7.43	821	54.2	2.6	207	134	0.210	<0.010	0.004	107	<0.25	<0.25	<0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	Oct-20	39.2		250	296	0.007	8.28	917	48.2	3.3	188	139	0.190	<0.010	0.003	100	<0.25	<0.25	<0.02	0.18	<0.40	<0.40	<0.20	<0.40	<0.20	<0.20
OW21-91	Jun-21	83.9)	271	558	0.004	7.86	1672	84.6	2.3	216	115	0.147	0.012	<0.002	157	<0.05	<0.05	<0.02	0.14	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	m	ng/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	(I
Burnside I	Jnits (2013 -)	m	ng/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW21-91	Nov-21	6	64.7	278	381	0.075	8.14		53.3	3.0	234	117	0.139	<0.010	0.004	114	< 0.05	< 0.05	0.03	0.71	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	May-22	5	55.7	194	389	0.068	7.08	656	60.6	3.0	257	125	0.120	<0.010	< 0.002	117	< 0.05	< 0.05	<0.02		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW21-91	Oct-22	4	13.1	206	292	0.028	7.55	1051	44.8	2.8	210	158	0.102	0.02	0.004	90.4	< 0.05	< 0.05	<0.02	0.32	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		1	5.9	5.05	164	0.001	0.57	60	25.8	0.0	125	93.1	0.015	0.005	0.002	55.6	0.00	0.03	0.01	0.05						
Maximum		2	202	578	940	90.0	9.10	2050	115	13.5	352	273.0	0.237	0.880	0.033	157	0.00	1.96	0.04	0.71						
Average			87	192.9	434	2.569	7.80	1098	52.9	3.0	241	165.6	0.132	0.144	0.008	110	#DIV/0!	0.28	0.02	0.26	0.00005	<0.20	0.00006	0.00	0.00004	<0.20

1							s			ivity	Ę						əse				iia			ane	nzene			Total)
Well	Sampling Date	Notes	Calcium		Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesi	DOC	Alkalinity	Sulphate	Boron	Iron	Mangane	Sodium	Nitrate	Nitrite	Ammonia	Z K	Benzene	m,p-Xylene	Ethylbei	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units ((1981 - 2012) Inits (2013 -)		mg/L mg/L	_	g/L g/L	-	mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L mg/L	mg/L	mg/L	ma/l	mg/L	ma/l	ma/l	mg/L	mg/L μg/L	mg/L	mg/L μg/L	mg/L	μg/L
Bulliside O	11115 (2013 -)		IIIg/L	+ "	g/L	_	IIIg/L	IIIg/L		ро/сп	IIIg/L	IIIg/L	IIIg/L	IIIg/L	mg/L	IIIg/L	mg/L	mg/L	mg/L	IIIg/L	mg/L	mg/L	μg/L	pg/L	μg/L	рус	μg/L	рус
	Feb-92		30.4		.5	U	194	<1.0	7.32	300	28.6	0.6																
	May-92		24.7		.6		208 221	1.5 1.5	8.28 7.71	362 760	35.4 35.5	0.8 1.1	-															ļ
	Aug-92 Nov-92		39.7		.3	_	257	<1.0	7.71	340	38.2	0.6	-															
OW25-91	Feb-93		48.7	5.	96		288	<1.0	7.85	305	40.3	<0.5																
	May-93		42.4		87		250	<1.0	7.90	440	35	2.1 U																
	Aug-93 Apr-94	+	33.8 43.9		28 60	-	221 297	<1.0 <1.0	8.20 7.70	400 500	33.2 45.6	<0.5 <0.5	+															
	Sep-94		41.0		78		266	<2.0	8.50	500	39.8	<0.5																
OW25-91	Apr-95		90.6		15		509	<1.0	7.40	700	68.6	15.5																
	Sep-95		67.4		44 84		437 222	<1.0	7.70 7.59	600 787	65.2 31.9	81 U	-															
	Apr-96 Sep-96		36.3 91.5		.6		448	<1.0 <1.0	8.50	602	53.3	<5.0 6																
OW25-91	Apr-97		43.5	5.	07		338	<1.0	8.40	800	55.6	1.8																
	Sep-97		74.3		58		401	<1.0	8.70	500	52.4	1.7																
	Apr-98 Sep-98		87.2 91.6		.3 99	\dashv	417 469	<1.0 <1.0	7.30 7.50	704 602	48.3 58.4	0.9 <0.5						-	-						-			
OW25-91	Apr-99	Ħ	121		01		511	<1.0	7.28	749	50.8	2.4																
OW25-91	Sep-99		48.8		82		438	<1.0	7.24	843	46.3	3.6 U																
	Apr-00	+	123 125		09 51		527 527	<2.0 <2.0	7.50 7.34	821 808	53.4 52.1	4.1 2.1	-															
	Sep-00 Apr-01	+	126		7.9	-	494	<2.0	6.96	741	43.6	1.1																
	Sep-01		103		.2		448	<1.0	7.29	708	46.3	1.2																
	Apr-02		95.6		.7		395	<1.0	6.79	695	37.9	3.7 J	U															
	Sep-02 Apr-03	+	110 110		.8		456 400	2 U	6.64 7.44	505 687	44 42	3.3 U																
	Sep-03	1	81		.3		394	1	7.62	471	29	6.3																
	May-04		99.8		.3		395	<2	7.42	713	35.4	<1.0																
	Sep-04		91.7		26		369	<2	8.26	620	33.9	<1.0																
	Apr-05 Nov-05		94.7 91.4		46 88	-	381 366	<2 <1	7.15 7.02	702 592	35.2 33.5	<1.0 <1.0																
	Apr-06		90.9		7		390	<1	8.01	662	39.4	2 U																
	Nov-06		100		7		400	1 U	7.22	689	37	2.0																
	Apr-07 Nov-07	\vdash	85 80		5 5		330 350	<1 U	7.33 7.60	612 642	29 37	<1.0 <1.0																
	Apr-08		90.7	_	5		360	<1	7.13	680	-	<1.0																
	Nov-08		100		2		400	<1	6.72	699	36.6	<1.0																
	Apr-09		94 86.1	6	.7 .9		359 355	<1 <1.0	7.29 7.46	641 748	30.3 34.1	1.7 2.2																
	Nov-09 Mar-10		97.0		.2	+	358	<1.0	7.66	730	28.1	1.7	+															
	Nov-10		87.6		.0		373	<1.0	6.73	502	37.6	2.5																
	Mar-11		94		.0		373	<1.0	7.82	748	33.7	2.0																
	Dec-11 Apr-12	+	123 97.7	6			449 368	<1.0 1.7	7.48 7.23	719 720	34.2 30.1	2.0 1.1																
	Nov-12		106		.8		410	<1.0	6.69	587	35.4	1.1																
OW25-91	May-13		196		84		706	<0.001	7.18	709	52.5	1.9																
	Oct-13	+	104		30	_	383	0.002 <0.001	7.33 7.24	678	30.0 32.1	1.3	-															
	Jun-14 Nov-14		94.5 89.8		85 31	\dashv	368 352	<0.001	7.24	684 640	31.0	2.4	+					<u> </u>										
OW25-91	Nov-14		90.8		15		353	<0.001			30.7	1.8																
	May-15	H	70.5		37		302	<0.001	7.05	666	30.5	1.3																
	Sep-15 Apr-16	+	88.9 92.3		42 57	\dashv	354 356	<0.001 <0.001	7.39 7.34	656 553	32.1 30.6	1.2	320	74.3	0.044	0.696	0.045	8.91	<0.10	<0.10	0.13	0.16	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	Oct-16		81.5		32	\dashv	331	<0.001	7.50	508	30.9	3.0	288	71.5	0.044	0.705	0.043	10.7	<0.10	<0.10	0.13	0.16	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW25-91	Apr-17		94.4	8.	24		363	<0.001	7.30	555	30.9	1.7	320	72.1	0.052	1.01	0.038	8.07	<0.05	<0.05	0.03	0.18	<0.20	<0.20	<0.10	0.26	<0.10	<0.20
	Sep-17		79.0		04	_	329	<0.001	7.61	493	31.9	1.4	301	73.2	0.066	0.668	0.039	12.3	<0.25	<0.25	0.05	0.19	<0.20	<0.20	<0.10	0.41	<0.10	<0.20
	Sep-17 May-18		78.2 86.0		39 21	\dashv	325 344	<0.001	7.73	529	31.6 31.5	1.5	299	72.9	0.064	0.656	0.04	12.1	<0.25	<0.25	0.05	0.24			-			\vdash
	Oct-18		75.4		51	\dashv	309	<0.001	7.56	270.5	29.4	1.2	252	69.4	0.077	<0.01	0.041	13.1			<0.02	0.13	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW25-91	May-19		89.3	10	0.9		334	<0.001	7.13	649	26.9	1.1	268	95.8	0.043	<0.01	0.041	7.58	<0.25	<0.25	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	Oct-19	++	66.1 94.2		44).9	_	291 349	<0.001 <0.001	7.40 7.21	476 736	30.7 27.6	1.3	269 302	73.9 80.6	0.101	<0.010	0.026	7.99	<0.05	<0.05	0.05 <0.02	<0.10	<0.20 <0.20	<0.20 <0.20	0.11 <0.10	0.43 <0.20	<0.10 <0.10	<0.20
	May-20 Oct-20	+	63.0		92	\dashv	278	0.038	7.21	426.8	27.6	2.9	264	78.2	0.043	0.010	0.03	15.3	<0.10	<0.10	<0.02	0.16	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	NXL	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Jnits (2013 -)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW25-91	Jun-21		NA																							
OW25-91	Nov-21		74.2	9.01	306	0.063	7.68		29.4	1.3	284	69.5	0.065	<0.010	0.025	11.7	< 0.05	< 0.05	0.09	0.71	<0.20	<0.20	<0.10	< 0.20	< 0.10	<0.20
OW25-91	May-22		79.4	9.28	323	0.108	7.10	675	30.4	1.5	285	65.2	0.067	0.015	0.016	11.9	< 0.05	< 0.05	0.03		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW25-91	Oct-22		78.2	9.13	325	0.089	7.04	503	31.4	2.0	261	70.1	0.074	0.016	0.04	14	< 0.05	< 0.05	0.06	0.53	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum			24.7	1.58	194	0.001	6.64	271	26.9	0.3	252	65.2	0.043	0.005	0.016	7.6	0.10	0.03	0.01	0.05						
Maximum			196	18	706	2.0	8.70	843	69	81.0	320	95.8	0.101	1.010	0.051	15	0.25	0.25	0.13	0.71						
Average			84	7.0	367	0.523	7.48	613	37.7	3.1	286	74.4	0.066	0.293	0.036	11	0.18	0.08	0.05	0.26	<0.20	<0.20	0.11	0.37	<0.10	<0.20

Well	Sampling Date	Notes	Calcium				Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	N H	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012) Jnits (2013 -)		mg/L mg/L	mg/l		_	ng/L ng/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
OW32-96	Sep-96		60.2	110			378	<1.0	7.93	811	55.2	2.25																
OW32-96	Apr-97		38.5	43.0	i	1	278	8	8.40	400	44.1	0.8																
OW32-96 OW32-96	Sep-97 Apr-98		49.9 40.6	69. 53.			342 275	<1.0 <1.0	8.60 7.75	600 579	52.9 42.1	0.8 2.6	+															
OW32-96	Sep-98		48.7	44		- (316	<1.0	7.79	500	47.3	0.9																
OW32-96 OW32-96	Apr-99 Sep-99		40.8 35.9	>12			267 230	<1.0 <1.0	7.8 7.73	470 516	40.0 34.1	1.4 5.1																
OW32-96	Sep-99		35.5	41	J,L		229	<1.0	7.73	516	34.0	2.8																
OW32-96 OW32-96	Apr-00		59.4 45.1	31.4			331 287	<2.0 <2.0	7.69 7.72	518 495	44.5 42.4	2.3 t	J															
OW32-96 OW32-96	Sep-00 Apr-01		42.7	39.			264	<2.0	7.72	511	38.3	<0.5																
OW32-96	Sep-01		46	38.			303	<1.0	7.67	549	45.6	1.2																
OW32-96 OW32-96	Apr-02 Sep-02		33.1 45	15.3	-		221 310	<1.0 2 U	7.29 6.90	445 392	33.7 48.0	5.2 t	J															
OW32-96	Apr-03		46	44.8			286	1.0	7.71	558	45.0	1.8	257	15.4	0.2	<0.0055	0.025	30					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW32-96 OW32-96	Sep-03 May-04	1	38 41.7	16. 51.			239 271	1.0	8.19 7.91	334 618	32.0 40.6	7.7 <1.0	234	11.2	0.098	<0.0055	0.014	19					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW32-96	Sep-04		35.7	25.0)	2	217	<2	8.08	405	31.1	<1.0	224	10.9	0.078	0.118	0.003	18.4					<0.00004	<0.0001	<0.00005	0.0004	<0.00004	
OW32-96 OW32-96	Apr-05 Nov-05		35.5 36.9	14.			219 225	<2 <1	7.63 7.37	451 400	31.6 32.2	<1.0 <1.0	220	7.38 8.42	0.115	0.089	0.012 0.00787	18.4					<0.00004	<0.0001	<0.00005	<0.00004 0.00006	<0.00004	
OW32-96	Apr-06	_	39.3	18		2	250	<1	8.67	456	37.5	1.0 t	230	9	0.34	<0.05	0.007	24.3					<0.0005	<0.001	<0.0005	<0.0005	<0.0005	
OW32-96 OW32-96	Nov-06 Apr-07		38	19 20	-		250 190	2 U	7.35 7.86	462 397	37.0 27.3	1.0 2.0	230	8	0.1	<0.05 <0.05	0.009	23 16.7					<0.5 <0.5	<1 <1	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
OW32-96	Nov-07		36	21		- 2	230	2 U	8.00	482	33.7	<1.0	230	8	0.08	<0.05	0.006	22.3					<0.5	<1	<0.5	<0.5	<0.5	
OW32-96 OW32-96	Apr-08 Nov-08	_	37.6 59.4	37 9			240 270	1 45	7.78	494 551	28.8	<1.0 1.0	240	9	0.17	<0.05	<0.001	22.4					<0.5	<1	<0.5	<0.5	<0.5	
OW32-96	Apr-09		35.9	29.6		2	214	<1	7.78	462	30.3	1.4	238	7.9	0.109	<0.050	<0.0010	18					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32-96 OW32-96	Nov-09 Mar-10		39.0 37.8	30.0			235 215	6.0 <1.0	7.65 7.97	543 554	33.4 29.2	1.5 3.2	233	7.6 7.5	0.104	<0.050 <0.050	0.0037	19.3 18.4					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW32-96 OW32-96	Nov-10		36.0	25.8			228	<1.0	6.80	439	33.5	1.4	236	7.5	0.126	<0.050	0.0019	19.4					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32-96	Mar-11		38.6	30.9			232	<1.0	8.12	544	32.9	1.8	247	6.4	0.087	<0.050	<0.0010	17.6					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32-96 OW32-96	Dec-11 Apr-12		55.0 49.7	40.2			280 256	<1.0 <1.0	7.91 7.80	491 531	34.6 32.0	1.2 <1.0	192 232	5.9 7.1	0.078	<0.050	0.0036 <0.0010	18.5 18.7					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW32-96	Nov-12		54.0	33.4			271	<1.0	6.91	404	33.1	1.2	245	6.2	0.071	<0.050	0.0027	17.5					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32-96 OW32-96	May-13 Oct-13		51.7 41.0	46.0 39.0			287 243	<0.001 <0.001	7.66 7.71	629 531	38.3 34.1	1.0	230	7.76	0.216	0.233	0.023	19.9					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96	Oct-13	_	42.3	42.		_	252	<0.001			35.6	0.9																
OW32-96 OW32-96	Jun-14 Nov-14		40.7 39.6	42.0			249 239	<0.001 <0.001	7.63 7.67	552 517	35.7 34.1	0.8 1.8	223	7.98 8.09	0.135	<0.010	0.006	20.3					<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW32-96	May-15		41.0	49.			245	<0.001	7.45	563	34.6	0.9	230	8.55	0.126	<0.010	0.007	22.2					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96 OW32-96	Sep-15 Sep-15		43.0 42.0	56.9			258 253	<0.001	7.94	446	36.5 35.9	0.8	221	9.48	0.116	0.064	0.018	22.1			-		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96	Apr-16		40.3	50.3	3	2	243	<0.001	8.24	466	34.6	1.0	235	9.14	0.132	0.058	0.012	19.6	0.12	<0.10	0.03	0.16	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96 OW32-96	Oct-16 Apr-17		39.9 49.4	46.9			241 325	<0.001 <0.001	7.58	NA 716	34.4 48.9	2.9 0.8	225 247	8.93 11.6	0.092	0.013	0.006	19.2 42.7	<0.25	<0.25	0.13 <0.02	0.46	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW32-96	Apr-17	D	52.2	150		- (333	<0.001			49.1	0.8	246	12.3	0.098	0.038	0.003	43.3	<0.25	<0.25	<0.02	<0.10						
OW32-96 OW32-96	Sep-17 May-18	_	40.6 52.3	66. 160			256 335	<0.001	7.91 8.00	459 612	37.5 49.7	1.1	239 226	10.0 12.6	0.079	<0.010	0.009	24.1 52.7	<0.25	<0.25	0.12	0.22	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW32-96	Oct-18		43.5	75.	,	1	259	<0.001	7.81	645	36.5	0.9	203	10.8	0.093	<0.01	< 0.002	27.6			<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96 OW32-96	May-19 Oct-19		41.5 44.9	71.4 92.8			252 272	<0.001 <0.001	7.48 7.29	533 557	36.1 38.9	0.7 1.5	224 230	12.6 10.7	0.102 0.151	<0.010	<0.002 0.025	23 31.9	0.3	<0.05 <0.10	<0.02	0.23	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW32-96 OW32-96	May-20		41.0	65.			244	<0.001	7.29	653	34.4	1.5	224	10.7	0.086	<0.010	<0.002	21.2	0.19	<0.10	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96	Oct-20		38.5	77.0			240	0.007	7.74	459.4	34.9	1.8	230	14.4	0.142	0.017	0.042	27.7	0.14	<0.10	0.2	0.31	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96 OW32-96	Jun-21 Nov-21		43.2 41.7	64.4			264 255	0.004 0.016	7.60 7.88	7.05	37.9 36.7	0.7	225 223	10.9	0.1	<0.010	0.003 <0.002	20.6	0.28	<0.05 <0.05	<0.02	0.19	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20
OW32-96	May-22		42.3	62.9)	2	258	0.044	7.42	301	36.9	0.8	231	13.5	0.094	0.018	0.002	20.3	1.44	<0.05	<0.02		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32-96	Oct-22		49.6	69.	_	+-2	285	0.005	7.53	357.7	39.1	1.0	218	10.8	0.133	0.019	0.011	32.7	<0.05	<0.05	0.11	0.36	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum			31.4	9.0			190	0.001	6.80	7	27.3	0.3	192	5.9	0.060	0.003	0.002	16.7	0.12	0.03	0.01	0.05						
Maximum Average			60 43	160 49.0			378 262	45.0 1.493	8.67 7.71	811 498	55 37.7	7.7 1.5	257 229	15.4 9.5	0.340 0.124	1.240 0.065	0.065 0.012	53 24	1.44 0.35	0.13 0.06	0.20	0.79	<0.20	<0.20	<0.10	0.00	<0.10	<0.20

			E	oride		Hardness	sic	Hd	activity	esium		iity	ate			anganese	٤			nia		e e	p-Xylene	enzene	g.	ne	e (Total)
	Sampling	tes	Calcin	Chlori		ıdpı	Phenois	ield p	Field	agne	200	VIkalin	Sulpha	ē	E	ange	di di	rate	litrite	omm.	조	nze	Ϋ́	₽ E	oluer	Xyler	Xylene Mixture
Well	Date	ž	$\overline{}$					Ξ		Σ		_		8	느	Σ	တိ	ž	ž	Α	ř	B.	É	<u> </u>	-	ò	≳इ
	(1981 - 2012) Jnits (2013 -)		mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside C	Jnits (2013 -)		mg/L	mg/L	\vdash	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW32A-02	Apr-03		52.0	4.25		257	1.0	7.70	573	30.0	1.2	197	115	0.17	0.74	0.012	32					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW32A-02	Sep-03	-	26.0	4.5		209	<1.0	5.28	446	35.0	3.7 J		116	0.12	0.93	0.0092	24					<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	
OW32A-02	Sep-03	D	25.0	4.5		202	<1.0	5.28	446	34.0	2.2	,U -	-	-	-	-	-					-	-	-	-	-	
OW32A-02	May-04	-	45.1	1.87		217	<2	7.90	535	25.3	<1.0	-	-	-	-	-	-					-	-	-	-	-	
OW32A-02	Sep-04		49.1	4.77		226	<2	8.01	460	25.2	<1.0	196	94.5	0.124	0.179	0.008	28.7					<0.00004	<0.0001	<0.00005	0.0004	<0.00004	
OW32A-02 OW32A-02	Apr-05 Nov-05	_	43.2 44.5	1.71 2.26		208 210	<2 <1.0	7.47 7.30	514 446	24.4	<1.0	190 184	86.7 75.5	0.132	0.104	0.008	29.6 29					<0.00004	<0.0001	<0.00005	<0.00004 0.00004	<0.00004	
OW32A-02 OW32A-02	Apr-06	_	22.0	3.0		160	1.0 U	8.46	507	25.6	1 1	200	95	0.11	0.143	0.008	29					<0.0004	<0.0001	< 0.0005	<0.0005	<0.0004	\vdash
OW32A-02	Nov-06	_	46.0	3.0	H	230	1.0 U		521	29.0	2	200	91	0.14	<0.05	0.008	33					<0.5	<1	<0.5	<0.5	<0.5	·
OW32A-02	Nov-06	_	47.0	4.0		240	1.0 U		521	29.0	1	210	91	0.14	0.05	0.009	33					<0.5	<1	<0.5	<0.5	<0.5	
OW32A-02	Apr-07	-	42.6	3.0		200	<1	7.72	468	22.8	1	190	103	0.1	<0.05	0.007	25.1					<0.5	<1.0	<0.5	<0.5	<0.5	
OW32A-02	Nov-07		46.6	3.0	Ш	230	2.0 U	7.92	528	27.1	<1.0	200	97	0.12	<0.05	0.011	34					<0.5	<1.0	<0.5	<0.5	<0.5	ļ'
OW32A-02	Apr-08	-	41.3	<2 55	\vdash	190 240	2.0	7.61	473 447	-	<1.0	200	75	0.15	<0.05	0.007	28.8					<0.5	<1.0	<0.5	<0.5	<0.5	<u> </u>
OW32A-02 OW32A-02	Nov-08 Apr-09		40.1 50.4	3.8		232	<1 <1	7.21 7.65	515	35.2 25.8	<1.0 1.7	230	10	0.08	<0.05 <0.050	0.007	19.2 26.5					<0.5 <0.50	<1.0 <1.0	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	
OW32A-02	Nov-09		52.9	3.7	\vdash	243	2.0	7.59	620	27.0	<1.0	215	112	0.120	<0.050	0.0032	29.1					<0.50	<1.0	<0.50	<0.50	<0.50	-
OW32A-02	Mar-10		59.3	3.5		252	<1.0	7.99	612	25.3	2.1	198	115	<0.50	0.82	<0.010	26.6					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32A-02	Nov-10		55.9	3.4		258	<1.0	6.80	439	28.8	1.3	211	108	<0.50	0.63	0.0110	31.1					< 0.50	<1.0	< 0.50	< 0.50	<0.50	
OW32A-02	Mar-11		56.2	4.0		254	<1.0	8.06	607	27.5	2.2	215	108	0.133	<0.050	0.0085	29.8					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32A-02	Dec-11		154	3.6		495	<1.0	7.83	560	27.0	1.1	198	109	0.13	1.01	0.0087	28.2					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32A-02	Dec-11	D	157	3.7		507	<1.0	7.83	560	27.9	1.0	204	110	0.127	1.06	0.0093	28.9					<0.50	<1.0	<0.50	<0.50	<0.50	
OW32A-02 OW32A-02	Apr-12 Nov-12	\vdash	148 199	4.4 3.7	Н	477 613	<1.0 <1.0	7.52 6.84	586 457	25.9 28.4	1.1	199 210	117 99.3	0.096	0.84	0.0077	27 30.9					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW32A-02	May-13		Ins	5.7	\vdash	013	<1.0	0.04	437	20.4	1	210	33.3	0.113	0.903	0.0003	30.9					<0.50	<1.0	<0.50	₹0.50	<0.50	-
OW32A-02	Oct-13		53.7	4.32	\Box	249	<0.001	NA	NA	28.0	1.6	210	118	0.123	0.851	0.012	31.4					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Jun-14		54.0	4.64		258	<0.001	7.44	632	29.9	1.2	199	127	0.132	0.991	0.011	29.1					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Nov-14		49.9	4.83		239	<0.001	7.52	583	27.8	2.1	201	128	0.143	0.775	0.011	29.1					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	May-15	_	50.6	5.34	Ш	240	<0.001	7.17	612	27.6	1.4	207	124	0.130	0.769	0.008	30.0					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	May-15	-	50.0	5.27		239	<0.001 <0.001	7.04	400	27.6	1.4	407	407	0.405	0.700	0.044	24.0					.0.00	.0.00	-0.40	.0.00	.0.40	-0.00
OW32A-02 OW32A-02	Sep-15 Apr-16		53.2	7.23		253 241	<0.001	7.91 7.92	488 521	29.2	1.3	197 213	127 129	0.125	0.726 0.783	0.011	31.0 29.6	<0.10	<0.10	0.18	0.30	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW32A-02	Apr-16	_	50.0	7.09	\vdash	240	<0.001	1.52	321	27.9	1.3	211	129	0.123	0.792	0.010	29.6		<0.10	0.10	0.30	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Oct-16		48.6	5.29		235	<0.001	8.07	507	27.6	3.0	208	117	0.136	0.610	0.011	28.4	<0.25	<0.25	0.80	1.09	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Oct-16	D	47.8	5.21		231	<0.001			27.2	3.8	210	126	0.139	0.618	0.012	27.9	<0.25	<0.25	0.76	0.93						
OW32A-02	Apr-17		51.4	3.71		248	<0.001	7.59	539	29.1	1.3	209	141	0.136	0.768	0.011	30.4	<0.10	<0.10	0.20	0.31	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Sep-17		48.9	4.83	\sqcup	242	<0.001	7.71	478	29.1	1.6	217	133	0.128	0.743	0.011	31.8	<0.25	<0.25	0.15	0.49	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	May-18		56.6	3.59	\vdash	273	<0.001	7.99	403	31.9	1.7	183	166	0.120	-0.01	0.040	20.0			-0.00	0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02 OW32A-02	Oct-18 May-19		56.5 52.1	3.61	\vdash	262 257	<0.001 <0.001	7.77 7.52	535 597	29.3	1.3	189 186	145 191	0.129	<0.01	0.048	30.0	0.13	<0.05	<0.02	0.16	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW32A-02	Oct-19		62.8	3.75		283	<0.001	7.20	536	30.6	1.3	224	164	0.152	<0.010	0.002	30.4	0.13	<0.10	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
	May-20		Dry	55	\Box		,,,,,,	0		55.5			1.01	002	10.0.0	0.002	00.1	0	100	10.02	100	10.20	-0.20	100	10.20	100	10.20
OW32A-02	Oct-20		62.7	3.56		274	0.004	7.34	569	28.6	2.0	280	207	0.159	0.015	<0.002	28.2	<0.25	<0.25	<0.02	0.13	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW32A-02	Jun-21		NA																								
OW32A-02	Nov-21		NA	1	Ш						$\sqcup \sqcup$						1										ļ'
OW32A-02	May-22	\vdash	NA	1	\vdash						\vdash	_	1	-										-			
OW32A-02	Oct-22	\vdash	NA		\vdash						\vdash						-										
Minimum		\vdash	22.0	1.71	\vdash	160	0.001	5.28	403	22.8	1.0	183	10.0	0.080	0.005	0.002	19.2	0.12	0.03	0.01	0.05						
Maximum			199	55	\Box	613	2.0	8.46	632	35	3.8	280	207.0	0.250	1.060	0.048	34	0.13	0.13	0.80	1.09						
Average			60	5.4		265	0.500	7.49	523	28.2	1.5	205	116.5	0.132	0.448	0.011	29	0.13	0.08	0.3	0.5	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling Date	2	Calcium	Chloride		Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	NXF	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012 Inits (2013 -	2)	mg/L mg/L	mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
									=0.4																		
OW33-96 OW33-96	Sep-96 Apr-97	+	54.7 18.9	36.3 7.73	+	248 101	<1.0 <1.0	8.17 8.80	504 300	27.2 13.0	7.0																
OW33-96	Sep-97		23.3	4.85		131	<1.0	8.60	300	17.8	2.6																
OW33-96	Apr-98		19.7	5.24		106	<1.0	8.00	309	13.8	2.6																
OW33-96 OW33-96	Sep-98 Sep-98	D	24.7 24.5	4.37		127 125	<1.0 <1.0	8.07 8.07	266 266	24.7 24.5	0.9 <0.5																
OW33-96	Apr-99		24.9	5.31		128	<1.0	8.00	286	15.9	0.6																
OW33-96	Sep-99		22.7	<0.10		113	<1.0	7.80	417	13.6	5.2 L																
OW33-96 OW33-96	Apr-00 Sep-00	+	25.7 25.4	2.83		135 133	<2.0 <2.0	7.90 7.97	333 329	17.3 17.0	1.2 L	'															
OW33-96	Apr-01		23.2	<3.0		128	<2.0	7.54	308	17.0	<0.5																
OW33-96	Sep-01		25.7	<3.0		136	<1.0	8.08	338	17.5	1.0																
OW33-96 OW33-96	Apr-02 Sep-02	+	21.5 28.0	<3.0 2.9	+	115 148	<1.0 8	7.45 5.82	334 261	15.0 19.0	1.3 3.3 L												-				
OW33-96	Apr-03		25.0	4.65	L	133	1	8.01	347	18.0	1.5																
OW33-96	Sep-03	1	20.0	4.65		131	1	8.19	234	13.0	8.1																
OW33-96 OW33-96	May-04 Sep-04	1	23.1 24.5	3.43 6.71	+	123 25.3	<2 <2	8.04 8.21	357 322	15.9 16.0	<1.0												-				
OW33-96	Apr-05		23.4	4.38		124	<2	7.22	348	16.0	<1.0																
OW33-96	Nov-05		24.3	5.49		126	<1.0	7.42	308	15.9	<1.0																
OW33-96 OW33-96	Apr-06 Nov-06	+	24.3 25.0	8		140 140	1 U	8.83 7.41	364 383	18.1 19.0	1 L	'															
OW33-96	Apr-07	\top	22.8	16		120	<1	7.98	379	15.5	2																
OW33-96	Nov-07		29.9	17		160	3 U	8.11	443	20.7	<1.0																
OW33-96 OW33-96	Apr-08 Nov-08	+	27.0 28.7	23		140 140	<1 <1	7.86 7.32	465 456	17.0	<1.0																
OW33-96	Apr-09	\top	24.5	27.1		130	<1	7.76	431	16.6	1.8																
OW33-96	Nov-09		28.1	19.1		144	1.0	7.73	491	18.1	1.9																
OW33-96 OW33-96	Mar-10 Nov-10	+	25.9 26.3	20.6		125 140	<1.0 <1.0	8.05 6.92	492 352	14.8 18.1	2.1 1.1																
OW33-96	Mar-11	\top	25.7	30.0		134	<1.0	8.23	506	17.1	1.7																
OW33-96	Dec-11	\Box	38.2	32.5		171	<1.0	7.96	522	18.5	2.6																
OW33-96 OW33-96	Apr-12 Nov-12	+	34.3 40.6	34.7 27.0		154 182	1.5 <1.0	7.85 7.13	532 385	16.6 19.6	1.2																
OW33-96	May-13	+	156	33.8		565	<0.001	7.72	496	42.6	1.8																
OW33-96	Oct-13		29.3	31.4		155	<0.001	8.02	501	19.9	1.4																
OW33-96 OW33-96	Jun-14 Nov-14	+	30.8 29.1	36.4 29.0	-	171 156	<0.001 <0.001	7.87 8.01	547 486	22.8	1.3																
OW33-96	May-15		29.6	32.8		159	<0.001	7.60	533	20.6	2.0																
OW33-96	Sep-15	\Box	31.4	37.1		168	<0.001	7.76	506	21.8	1.2	224	04.0	0.050	0.010	0.000	50.4	0.44	0.40	0.40	0.40	-0.00	.0.00	0.10	.0.00	-0.46	.0.00
OW33-96 OW33-96	Apr-16 Oct-16	+	32.2 29.7	41.2 33.5	+	174 161	<0.001 <0.001	8.02 8.62	448 433	22.7 21.1	3.4	234	21.2	0.253	<0.010	0.022	50.4 45.1	0.14 <0.25	<0.10	0.12	0.19	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW33-96	Apr-17		33.1	42.9		183	<0.001	7.76	468	24.3	1.4	223	26.3	0.249	0.082	0.008	50	<0.10	<0.10	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96	Sep-17	\Box	30.1	35.9		165	<0.001	7.83	413	21.8	1.3	220	22.5	0.221	0.427	0.015	45.9	<0.05	<0.05	<0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96 OW33-96	May-18 Oct-18	+	32.1 32.1	41.1 32.7	+	178 167	<0.001	8.24 7.90	430 219	23.8	1.4	210 184	22.4 19.8	0.224	<0.01	0.008	44.1			<0.02	<0.10	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW33-96	May-19	T	31.1	45.8	T	168	<0.001	7.66	491	22	1.1	212	22	0.241	<0.01	0.007	43.8	0.14	<0.05	0.09	0.32	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96	Oct-19	\Box	31	38.7		167	<0.001	8.00	469	21.8	1.5	212	20	0.243	<0.010	0.015	43.9	0.06	<0.05	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96 OW33-96	May-20 Oct-20	+	32.2 25.4	41.7 39.1	+	173 145	<0.001 0.004	7.67 8.03	511.4 354.6	22.4 19.8	1.5 2.9	215 217	19.3 19.3	0.205 0.264	<0.010	0.007 <0.002	46.2 42.1	0.2	<0.05 <0.05	0.03 <0.02	0.13 <0.10	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW33-96	Jun-21	力	31.9	41.2	L	176	0.004	7.69	544	23.4	1.3	219	19	0.205	<0.010	0.005	42.5	0.11	< 0.05	0.09	0.47	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96	Nov-21		31.8	42.6		177	0.045	7.95		23.6	1.3	217	20	0.217	<0.010	0.011	42.1	<0.05	<0.05	0.16	0.56	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW33-96 OW33-96	May-22 Oct-22	+	31.6 38	42.6 41.0	1	176 199	0.075 0.011	7.46 7.60	379 248.3	23.6 25.4	1.2 2.1	220	19.2 19.2	0.174	<0.010	0.004	40.5 46	0.12 0.11	<0.05 <0.05	0.03	0.97	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
O W 33-80	OU-22	+	30	41.0	1	133	0.011	7.00	240.3	20.4	2.1	213	13.2	0.223	0.013	0.003	40	0.11	<0.03	0.1	0.57	<0.20	<0.20	X0.10	<0.20	<0.10	<0.20
Minimum			18.9	2.83		25	0.001	5.82	219	13.0	0.0	184	19.0	0.174	0.005	0.003	40.5	0.06	0.03	0.01	0.05						
Maximum		+	156 31	46 23.6	1	565 154	8.0 0.625	8.83 7.85	547 399	43 19.7	25.4 4.9	234 215	26.3 20.8	0.264	0.480	0.022	50 45	0.20	0.13	0.16	0.97	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Average	L	1 1	31	23.6		154	0.025	7.85	399	19.7	4.9	215	∠∪.8	0.229	0.083	0.010	45	0.12	U.U4	U.U5	0.29	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling Date	Notes	Calcium	O. Horizon	5	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012)		mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside U	Jnits (2013 -)	\vdash	mg/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW34-96	Sep-96		45.8	10.4		226	<1.0	8.04	455	27.0	3.0																
OW34-96	Apr-97		33.9	10.1		218	<1.0	8.40	400	32.5	1.0																
OW34-96	Sep-97		48.1	10		268	<1.0	8.40	400	36.0	<0.5																
OW34-96	Apr-98		43.6	10.4		240	<1.0	7.81	487	31.9	1.8																
OW34-96	Sep-98	_	49.8	6.86		270	<1.0	7.88	441	35.3	1.3																
OW34-96 OW34-96	Apr-99 Sep-99		51.6 42.9	9.24 8.9		273 228	<1.0 <1.0	7.8 7.63	463 523	34.9 29.3	1.7 3.8																
OW34-96	Apr-00		56.2	10.9		301	<2.0	7.65	554	39.1	2.2																\vdash
OW34-96	Sep-00		51.6	12.2		289	<2.0	7.70	540	39.0	2.7																
OW34-96	Apr-01		57.8	12.9		298	<2.0	7.33	535	37.2	1.0																
OW34-96	Sep-01	-	53.6	11.2	_	301	<1.0	7.71	536	40.5	1.9																
OW34-96	Apr-02		48.7	10.7		273	2 U	7.25	559	36.8	3.1																
OW34-96 OW34-96	Sep-02 Apr-03		62.0 57.0	12 12.2		332 302	1.0	5.64 7.66	429 576	43.0	2.1 1.4	252	74.8	0.15	0.047	0.014	23					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW34-96	Sep-03		53.0	11.9		291	1.0	8.16	403	37.0	5.8	240	66.7	0.17	0.03	0.027	24					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
OW34-96	May-04		50.9	13.1		278	<2	7.84	584	36.5	<1.0	-	-	-	-	-	-					-	-	-	-	-	·
OW34-96	Sep-04	_	49.1	17.5	_	269	<2	8.01	496	35.5	<1.0	228	91.1	0.116	0.14	0.015	23.3					<0.00004	<0.0001	<0.00005	0.0004	<0.00004	
OW34-96	Apr-05		51.6	13.4		280	<2	7.45	577	36.7	<1.0	234	79.5	0.119	0.125	0.011	23.1					<0.00004	<0.0002	<0.00006	<0.00004	<0.00005	
OW34-96 OW34-96	Nov-05	_	49.8 54.2	13.5 13		265 300	<1 3 U	7.33 8.57	484 563	34.2 39.2	<1.0	211	68.4	0.105	0.178	0.0075	22.9					<0.00004	<0.0001	<0.00005	0.00008	<0.00004	\vdash
OW34-96 OW34-96	Apr-06 Nov-06		53.0	13		300	3 U 2 U		571	40.0	1.0	230	80 79	0.22	0.06 <0.05	0.003	22.9					<0.0005 <0.5	<0.001	<0.0005 <0.5	<0.0005 <0.5	<0.0005 <0.5	
OW34-96	Apr-07		42.4	13		240	<1	7.80	505	31.5	2.0	210	79	0.09	<0.05	0.004	19.9					<0.5	<1	<0.5	<0.5	<0.5	
OW34-96	Nov-07	_	44.2	13		260	<1	7.94	562	37.5	<1.0	220	74	0.11	<0.05	0.022	28					<0.5	<1	<0.5	<0.5	<0.5	
OW34-96	Apr-08		54.1	13		290	2	7.59	592	-	<1.0	240	99	0.12	<0.05	0.005	22.7					<0.5	<1	<0.5	<0.5	<0.5	
OW34-96	Apr-08		55.2	13		310	2	7.59	592	-	<1.0	-	-	-	-	-	-					-	-	-	-	-	
OW34-96 OW34-96	Nov-08 Nov-08		61.0	19 18		320 320	<1	7.03	589 589	40.6	<1.0 <1.0	-	-	-	-	-	-					-	-	-	-	-	
OW34-96 OW34-96	Apr-09	-	53.6	13.3		279	<1	7.56	543	35.4	1.2	230	87.2	0.091	<0.05	0.0031	18.9					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Apr-09	_	53.6	14.0	_	277	<1	7.56	543	34.8	1.6	232	87.3	0.093	<0.05	0.0031	18.9					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Nov-09		51.4	14.4		276	2 J	7.71	652	35.9	1.4	229	83.6	0.097	< 0.05	0.0174	20.7					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Nov-09		51.4	14.5	_	278	12 J	7.71	652	36.4	<1.0	228	83.2	0.099	0.05	0.0186	20.7					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Mar-10		50.6	13.5		248	<1.0	8.12	485	29.7	1.4	219	80.8	0.104	<0.05	0.0079	18.4					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96 OW34-96	Mar-10 Nov-10		51.7 53.0	13.3		254 302	<1.0 <1.0	8.12 6.83	485 436	30.4 41.3	1.4	212	81.0 78.7	0.107	<0.05	0.0085	19.2 026					<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	
OW34-96	Mar-11	_	56.0	15.5		293	<1.0	8.09	642	37.1	1.3	248	81.6	0.090	<0.050	0.025	19.9					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Mar-11		56.5	15.3		294	<1.0	8.08	642	37.3	1.2	252	81.5	0.092	<0.050	0.0014	19.4					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Dec-11		65.8	15.6		311	<1.0	7.82	577	35.7	1.4	230	77.8	0.092	< 0.050	0.0144	20.7					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96	Apr-12		60.5	17.8		280	<1.0	7.63	595	31.4	1.3	228	83.4	0.067	<0.050	0.0038	18.4					<0.50	<1.0	<0.50	<0.50	<0.50	
OW34-96 OW34-96	Apr-12	_	61.1 73.5	17 15	-	283 333	<1.0 <1.0	7.63 6.95	595 464	31.8 36.3	<1.0 <1.0	214	81.9 82.1	0.068	<0.050	0.0042	18.5 22.1		-			<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	──'
OW34-96 OW34-96	Nov-12 May-13	_	116	16.6		503	<0.001	7.46	600	51.9	2.1	23/	82.1	0.096	<0.050	0.0142	22.1		1			<0.50	<1.0	<0.50	<0.50	<0.50	 '
OW34-96	Oct-13		52.6	14.9		276	<0.001	7.70	590	35.2	1.1	226	84.1	0.095	<0.010	0.009	23.2					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	Jun-14		54.5	17.5		293	<0.001	7.50	628	38.1	0.8	223	85.6	0.094	<0.010	0.004	22.7					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	Nov-14		52.7	18.6		280	<0.001	7.68	587	36.1	1.3	220	90.5	0.107	<0.010	0.004	22.4					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	May-15		52.2	18.6		276	<0.001	7.07	609	35.3	1.2	229	85.7	0.094	<0.010	0.003	22.9					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	Sep-15	-	57.6	23.7	_	295	<0.001	7.49	626	36.8	0.8 1.2	222	91.6	0.089	<0.010	<0.002	22.1	-0.10	-0.10	0.05	0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96 OW34-96	Apr-16 Oct-16		59.8 49.5	25.7 17.1		298 266	<0.001	7.72 7.84	515 485	36.1 34.7	3.4	243	95.7 79.2	0.084	<0.010	<0.002	19.9	<0.10	<0.10	0.05	0.18	<0.20 <0.20	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW34-96	Apr-17		58.4	18.9		309	<0.001	7.67	556	39.7	1.1	243	111	0.098	0.02	0.003	22.1	<0.10	<0.10	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	Sep-17	_	56.6	20.2		297	<0.001	7.70	509	37.7	1.5	239	105	0.082	<0.010	0.004	22.3	<0.25	<0.25	<0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	May-18	_		nissed o				7.94	463																		
OW34-96	Oct-18	_	55.3	18.9	_	259	<0.001	7.80	275.1	33.4	0.9	205	87.2	0.092	<0.01	<0.002	20.6			<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	May-19		54.0	31.5		273	<0.001	7.49	577	33.5	0.8	219	83.6	0.096	<0.010	0.005	19.8	0.08	<0.05	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96 OW34-96	Oct-19 May-20		49.7 57.8	22.0 26.8		264 289	<0.001 <0.001	7.39 7.55	479 704	34 35.1	1.3	223	84.0 96.7	0.109	<0.010	0.007 <0.002	22.4	<0.05	<0.05	<0.02	<0.10	<0.20 <0.20	<0.20 <0.20	<0.10	<0.20 <0.20	<0.10 <0.10	<0.20 <0.20
OW34-96 OW34-96	Oct-20		38.6	21.5		289	0.005	7.90	421.3	28.8	1.7	334	96.7	0.084	0.017	<0.002	20.6	<0.10	<0.10	<0.02	0.13	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

Well	Sampling Date	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Jnits (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW34-96	Jun-21	56.7	25.5	295	0.009	7.76	652	37.2	0.7	231	89.5	0.078	0.018	0.002	20	<0.05	< 0.05	< 0.02	0.27	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	Nov-21	54.1	24.4	281	0.041	7.86		35.4	0.9	230	91.0	0.085	<0.010	< 0.002	19.9	<0.05	< 0.05	0.06	<0.10	< 0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW34-96	May-22	54.2	26.2	281	0.071	7.36	563	35.3	0.7	231	89.5	0.068	0.024	0.003	20.1	0.13	< 0.05	< 0.02		< 0.20	<0.20	< 0.10	< 0.20	< 0.10	<0.20
OW34-96	Oct-22	57.1	22.6	295	0.052	7.72	468.8	37	0.9	218	87.1	0.098	0.017	<0.002	24.2	<0.05	< 0.05	<0.02	0.2	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		33.9	6.86	215	0.001	5.64	275	27.0	0.3	200	66.7	0.067	0.005	0.001	18.4	0.08	0.03	0.01	0.05						
Maximum		116	32	503	12.0	8.57	704	52	5.8	334	111.0	0.220	0.178	0.027	28	0.13	0.13	0.06	0.28						
Average		54	15.9	285	0.766	7.65	536	36.1	1.4	230	85.1	0.102	0.029	0.008	22	0.11	0.06	0.0	0.1	#DIV/0!	#DIV/0!	#DIV/0!	0.00	#DIV/0!	#DIV/0!

Well	Sampling Date	Calcium	O.H.O.		Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside	Units (2013 -)	mg/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW36	Sep-17	119	20.6		607	<0.001	7.46	1061	75.2	2.9	291	485	0.246	<0.010	0.046	59.6	0.98	<0.25	0.03	0.35	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	May-18	123	19.4		617		8.2	1005	75.2	1.7	256	478	0.214	<0.010	0.019	55.7					<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Oct-18	133	18.7		634	<0.001	7.52	962	73.4	1.9	245	471	0.208	<0.01	0.007	55.5			< 0.02	0.14	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	May-19	121	26.5		599	<0.001	7.31	1129	72.0	1.2	232	490	0.186	<0.010	0.006	50	1.28	<0.25	<0.02	0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Oct-19	120	24.4		590	<0.001	7.13	1020	70.4	1.9	246	483	0.204	<0.010	0.007	50.4	1.09	<0.25	<0.02	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	May-20	128	25.6		621	<0.001	7.35	1390	73.2	1.8	255	499	0.186	<0.010	0.005	54.1	0.40	<0.25	<0.02	0.20	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Oct-20	98.5	25.6		493	0.005	7.53	885	60.1	1.5	261	488	0.225	<0.010	0.004	45.9	<0.25	<0.25	<0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Jun-21	114	22.8		566	0.003	7.26	1354	68.2	1	256	433	0.193	<0.010	0.018	48.1	0.27	< 0.05	<0.02	0.29	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Nov-21	120.0	22.2		581	0.04	7.65		68.4	1.3	291	422	0.207	0.011	0.004	48.8	< 0.05	< 0.05	0.04	0.15	<0.20	<0.20	<0.10	<0.20	< 0.10	<0.20
OW36	May-22	124.0	22.7		617	0.029	7.16	887	74.6	1	274	454	0.173	0.033	0.004	51	0.29	< 0.05	<0.02		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
OW36	Oct-22	134.0	25		638	0.005	7.2	663	73.7	1.2	270	464	0.19	0.03	0.002	52.4	0.24	<0.05	<0.02	0.11	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		98.5	18.70)	493	0.001	7.13	663	60.1	1.0	232	422.0	0.173	0.005	0.002	45.9	0.24	0.03	0.01	0.05						
Maximum		134	27		638	0.040	8.20	1390	75	2.9	291	499.0	0.246	0.033	0.046	60	1.28	0.13	0.04	0.35						
Average		121	l l 23.0		597	0.0085	7.43	1036	71.3	1.6	262	469.7	0.203	0.010	0.011	52	0.65	0.08	0.0	0.2	<0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.20

Well	Sampling 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Calcium	Chloride	Hardness	Phenois	Field pH	Field S Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	Z L	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
		mg/L	mg/L	mg/L	μg/L			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside (Jnits (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MHB	May-15	91.8	96.9	448	<0.001	7.48	812	53.1	5.2																
MHB	Apr-16	93.4	103	456	<0.001	7.65	830	54.2	6.4	296	159	0.101	0.135	0.084	44.4	<0.25	<0.25	0.19	0.34	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Oct-16	89.0	99.1	440	<0.001	7.70	929	52.8	NA	272	152	0.117	0.090	0.091	42.4	<0.25	<0.25	0.18	0.48	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Apr-17	89.2	97.4	444	<0.001	7.41	862	53.7	4.2	331	147	0.108	0.372	0.076	43.4	<0.25	<0.25	0.16	0.21	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Sep-17	87.4	112	443	<0.001	7.39	888	54.6	4.3	303	156	0.107	1.060	0.092	47.1	<0.25	<0.25	0.21	0.47	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	May-18	sample n	nissed																						
MHB	Oct-18	89.5	104	435	<0.001	7.50	564	51.3	4.5	259	142	0.106	<0.01	0.042	46.9			0.14	0.34	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	May-19	88.4	120	434	<0.001	7.16	893	51.8	4.7	298	148	0.124	< 0.010	0.120	46.9	<0.25	< 0.25	0.28	0.75	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Oct-19	87.4	111	431	<0.001	7.33	839	51.6	4.2	295	138	0.132	< 0.010	0.046	48.4	< 0.25	< 0.25	0.22	0.33	<0.20	<0.20	<0.10	<0.20	< 0.10	<0.20
MHB	May-20	88.7	127	438	<0.001	7.12	1190	52.5	4.7	300	144	0.128	0.041	0.040	54.9	<0.25	< 0.25	0.19	0.56	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Oct-20	55.2	126	287	0.003	7.43	777	36.2	4.8	306	142	0.15	0.045	0.042	37.7	<0.25	<0.25	0.18	0.67	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Jun-21	86.8	125	440	0.003	7.26	1082	54.2	4.7	303	132	0.137	0.030	0.082	48.9	<0.05	< 0.05	0.26	1.69	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Nov-21	NA																							
MHB	May-22	92.8	130	469	0.061	6.92	935	57.6	5	319	126	0.134	0.013	0.077	56.6	<0.05	< 0.05	0.24		<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
MHB	Oct-22	90.7	141	455	0.009	7.06	570	55.6	5.4	300	139	0.131	0.019	0.013	55.2	<0.05	<0.05	0.17	0.85	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20
Minimum		55.2	96.90	287	0.001	6.92	564	36.2	4.2	259	126.0	0.101	0.005	0.013	37.7	0.00	0.03	0.14	0.21						
Maximum		93	141	469	0.061	7.70	1190	58	6.4	331	159.0	0.150	1.060	0.120	57	0.00	0.13	0.28	1.69						
Average		87	114.8	432	0.006	7.34	859	52.2	4.8	299	143.8	0.123	0.152	0.067	48	< 0.05	0.10	0.2	0.6	<0.20	<0.20	<0.10	<0.20	<0.10	<0.20

						-																			Φ.			â
Well	Sampling Date	Notes	Calcium		Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	NXL	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012) Inits (2013 -)		mg/L mg/L		ng/L ng/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
PW1	Feb-85		120		2.5		355	<1.0	7.47	860	13.4	1.9																
PW1 PW1	May-85 Feb-86	H	118 108		60 64	-	339 319	<1.0 <1.0	7.53 7.49	755 690	10.6 11.8	1.4 1.5																
PW1	May-86		102	6	7.5		299	<1.0	7.61	725	10.8	1.2																
PW1 PW1	Aug-86 Nov-86	Н	185 122		76		564 365	1.0 <1.0	7.34 7.44	3390 870	24.6 14.6	1.3 2.5																
PW1	Feb-87		118		47		345	<1.0	7.62	770	12.2	1.7																
PW1 PW1	May-87 Aug-87	\vdash	140 220		42 60	-	410 667	<1.0 <1.0	7.36 7.21	1140 2950	14.6 28.4	1.7																
PW1	Jan-88		115	10)4.4		337	<1.0	-	-	12.1	1.8																
PW1 PW1	May-88 Aug-88	Н	210.5 175.6		76.1 664	_	622 538	<1.0 <1.0	6.57 7.25	2340 2310	23.3	1.8																-
PW1	Nov-88		215		25.2		645	<1.0	6.86	2920	26.0	1.6																
PW1 PW1	Feb-89 May-89	$+ \mathbb{T}$	98.3 165		3.5	Ŧ	286 477	<1.0 <1.0	7.05 7.06	624 1130	9.85 15.6	2.0																
PW1	Aug-89	H	32.3	3	7.8	╛	107	-	7.28	314	6.4	8.2																
PW1 PW1	Nov-89 Feb-90	Н	192 89		69 37	4	606 262	<1.0 <1.0	7.00 7.20	2010 530	30.5 9.8	3.0 2.4																
PW1	May-90	Ħ	276		70	Ⅎ	809	<1.0	7.20	2150	28.9	1.0																
PW1 PW1	Aug-90 Nov-90	Н	212 155		03 84		642 446	<1.0 <1.0	6.75 7.40	2580 760	27.1 14.3	1.1 2.7																
PW1	Feb-91	Ħ	109		9.2	=	316	<1.0	8.0	639	10.6	1.9																
PW1 PW1	Feb-91	D	110 120		9.6 67		317 351	<1.0	8.0 7.29	639 850	10.1 12.4	2.0 1.5																
PW1	May-91 Aug-91	H	170		106		505	<1.0 <1.0	6.54	2910	19.5	1.2																
PW1 PW1	Nov-91 Feb-92	Н	108 103		.70 .83		403	<1.0 <1.0 J	7.8 7.15	956 1000	32.4 17.3	0.8 L																
PW1	Feb-92	D	103		166		329 324	3.5 J	7.15	1000	16.7	1.8																
PW1 PW1	May-92	П	131 257	2	24 351		383 768	<1.0	7.48 7.29	762	13.5	1.6 0.9																
PW1	Aug-92 Aug-92	D	253		136		755	<1.0 <1.0	7.29	6180 6180	30.7 30.0	1.1																
PW1	Nov-92		214		99		629	<1.0	7.49	1900	22.8	1.6																
PW1 PW1	Nov-92 Feb-93	D	201 101		6.4	_	593 283	<1.0 <1.0	7.49 7.38	1900 420	22.1 7.6	1.6 <0.5																
PW1	May-93		163		57		465	<1.0	7.30	820	14.1	<0.5																
PW1 PW1	Aug-93 Apr-94	H	228 114		114 9.4	_	683 333	<1.0 <1.0	7.30 7.5	3500 800	27.6 11.7	<0.5 <0.5																
PW1	Apr-94	D	115		0.4		336	<1.0	7.50	800	11.8	<0.5																
PW1 PW1	Sep-94 Apr-95	\vdash	226 146		55 55		678 418	<2.0 <1.0	7.40 7.1	3400 1000	27.6 13.1	<0.5																
PW1	Sep-95		212	7	67		625	<1.0	7.1	2600	23.2	<0.5 L																
PW1 PW1	Apr-96 Sep-96	\vdash	106 194		0.5	\dashv	309 561	<1.0 <1.0	7.54 7.4	825 2540	10.8 18.7	<0.5 8.5									-							-
PW1	Sep-96		194	5	69		563	<1.0	7.4	2540	19.2	16																
PW1 PW1	Apr-97 Sep-97	+	159 232		0.2	\dashv	457 688	<1.0 <1.0	8.1 7.3	1100 3000	15 26.5	1.7	+								-							
PW1	Apr-98	П	126	5	5.7		370	<1.0	7.53	773	13.4	2.6																
PW1 PW1	Sep-98 Sep-98	\vdash	212 214		i13	\dashv	618 624	<1.0 <1.0	7.12 7.12	2640 2640	21.5 21.7	0.6	+															
PW1	Apr-99		281	5	50		793	<1.0	7.32	2380	22.2	1.7 L																
PW1 PW1	Sep-99 Apr-00	\vdash	240 269		89 47	\dashv	701 790	<1.0 <2.0	7.08 6.95	3820 2710	24.7 28.7	3.3 L								-								
PW1	Sep-00		264	10	020		763	<2.0	6.59	3960	25.2	2.2																
PW1 PW1	Apr-01 Sep-01	+	172 265		260 260	-	491 759	<2.0 <1.0	7.16 6.83	1290 4598	14.9 23.6	13.4																-
PW1	Apr-02	且	185	3	94		532	2 U	6.69	1800	17	2.4																
PW1 PW1	Sep-02 Apr-03	+	290 250		300 192		852 763	3 U	7.28 6.91	4570 3500	31 33	4.8 L																
PW1	Sep-03	1	300	1	760		809	1	7.22	5840	36	3.5																
PW1 PW1	May-04 Sep-04	1	178 264		710	\dashv	520 789	<2 <2	7.41 7.32	1810 5110	18.5 31.4	<1.0 <1.0																
PW1	Apr-05		332		220		982	<2	6.79	4540	37.3	<1.0																

Well	Sampling Date	Notes	Calcium	Chloride		Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	N T	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)		ng/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside U	Jnits (2013 -)	m	ng/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PW1	Nov-05		290	1970		873	<1	6.90	6310	36	<1.0																
PW1	Apr-06		240	568		690	2	7.8	2360	22.5	1 U																
PW1	Nov-06		266	1810		800	8	6.43	4900	34	4																
PW1	Apr-07		217	1220		630	<1	6.88	3780	37.2	1																
PW1	Nov-07		1.6 L	169		160	3 J,U		847	7	1																
PW1	Nov-07		0.8 L	165		160	1 J,U	7.83	847	7	1																
PW1	Apr-08		69	1010		790	2	7.03	362	28.8	2																
PW1 PW1	Nov-08 Apr-09		268 264	1940 1090	\vdash	840 773	<1 <1	6.78 7.06	6200 3600	42.4 27.3	5 3.7																\vdash
PW1	Nov-09		207	2070	\vdash	634	5.0	6.87	6580	28.7	4.6	1															
PW1	Mar-10		293	1440		875	<1.0	7.34	5470	34.9	4.5																++
PW1	Nov-10		209	1540		618	<1.0	NA	NA NA	23.7	4.7																
PW1	Mar-11		237	1130		717	<1.0	7.63	436	30.3	4.9																+
PW1	Dec-11		3.7	2.8		286	<1.0	7.67	603	30.9	1.4																
PW1	Apr-12	_	NS	-		-	-	-	-	-	-																
PW1	Nov-12		NS	-		-	-	-	-	-	-																
PW1	May-13	4	9.3	3.82		247	0.001	7.38	622	30.2	1.3																
PW1	Oct-13	Re	sident	not preser	nt - no	o sample																					
PW1	Jun-14	5	7.4	3.79		285	<0.001	7.38	690	34.4	0.9																
PW1	Nov-14	5	0.5	4.48		250	<0.001	7.72	591	30.0	0.9																
PW1	May-15	5	2.4	3.52		258	<0.001	7.47	664	30.9	1.2																
PW1	Sep-15		8.7	4.36		286	<0.001	8.81	573	33.8	0.9																
PW1	Apr-16		5.9	4.02		275	<0.001	7.78	523	32.9	1.1																
PW1	Oct-16		1.3	3.67		256	<0.001	7.99	555	31.1	3.0																
PW1	Apr-17		2.0	2.90		264	<0.001	7.54	544	32.5	1.2																
PW1	Sep-17	_	1.7	4.54	ĻIJ	262	<0.001	7.74	543	32.3	1.3																
PW1	May-18			not preser	nt - no			7.00	040.5	00.4	4.0																
PW1	Oct-18		0.7	3.93 5.67		246	<0.001	7.68 7.59	316.5	29.1	1.8	400					27.0	0.44	0.05								
PW1	May-19		8.0			242 254	<0.001		656	29.6	1.1	196					27.9	0.11	<0.05								-
PW1 PW1	Oct-19 May-20	_	1.4	3.81 - no samp		204	<0.001	7.37	593	30.6	1.6	194		-			29.6	0.10	0.10					-	-	-	+1
PW1	Oct-20			9 - no samp 9 - no samp				1				+						-						 	<u> </u>	 	\vdash
PW1	Jun-21			o - no samp								1						 									$\vdash \vdash \vdash$
PW1	Nov-21		VA I	, 110 34111	516							1															\vdash
PW1	May-22	_	0.2	4.85	\vdash	253	<0.011			31.1	1.0	198					29.4	<0.05	<0.05								+-1
PW1	Oct-22		9.1	5.02		297	<0.002			36.4	1.0	189					30.9	<0.05	<0.05								
Minimum		_	2.3	2.80		107	0.001	6.43	314	6.4	0.3	189					27.9	0.10	0.03								
Maximum			332	2070	\sqcup	982	8.000	8.81	6580	42	16.0	198					31	0.11	0.10								
Average		1	64	530.5		502	0.764	7.32	2119	23.0	2.3	194					29	0.105	0.04								

Well	Sampling S	Notes		Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	NXL	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012)	mg		mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside l	Jnits (2013 -)	mg	/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PW2	May-85	6		22	258	<1.0	7.56	605	26.2	0.7																
PW2	Feb-86	62		27.5	271	<1.0	7.32	670	27.8	0.9	-															
PW2 PW2	May-86 Aug-86	94		45.5 23.5	329 286	<1.0 <1.0	7.51 7.40	675 650	14.2	1.8																
PW2	Nov-86	11	2	200	411	1	7.76	1410	31.8	1																
PW2	Feb-87	13		88.5 54.5	398 359	<1.0	7.63	940	17.8 15.6	1.7 2.4																
PW2 PW2	May-87 Aug-87	12		162	466	<1.0 <1.0	7.41 7.76	850 1340	37.2	0.9																
PW2	Nov-87	13	2	75.5	509	<1.0	7.43	1140	43.53	1.2																
PW2 PW2	May-88	10		79.2 214.9	332.6 461.2	<1.0 <1.0	6.82 7.25	806 1450	15.19 36.7	1.8																
PW2	Aug-88 Feb-89	125		122	378	<1.0	7.25	922	15.8	1.4																\vdash
PW2	Apr-89	13	1	74.7	390	5.5	7.15	839	15.2	1.9																
PW2 PW2	Aug-89	13		158	490	<1.0	7.58	548	38.2	1	. —															
PW2 PW2	Nov-89 Feb-90	68		95.7 145	239 372	1.5 <1.0	7.40 6.88	608 783	16.1 16.3	1.3 t	,															
PW2	May-90	12	11	110	368	<1.0	7.30	639	16	1.7																
PW2 PW2	Aug-90	12		115 119	371	<1.0	7.35	770	16.6	0.9																igwdown
PW2	Nov-90 Feb-91	10		55.2	418 299	<1.0	7.50 8.20	740 652	16.6 12	1.8																
PW2	May-91	Not	Sam	pled																						
PW2 PW2	Aug-91		Sam																							igwdown
PW2	Nov-91 Feb-92		Sam .2		307	<1.0	7.27	592	14.9	1.5																
PW2	May-92	Not	Sam	pled																						
PW2	Aug-92		.9	75.1	310	<1.0	7.83	1300	14.7	1.7	-															
PW2 PW2	Nov-92 Feb-93	90	.7	76.5 33.7	292 284	<1.0 <1.0	7.90 7.70	600 400	15.8 9.8	<0.5																
PW2	May-93	Not	Sam	pled																						
PW2 PW2	Aug-93 Apr-94		5	240 126	487	<1.0 <1.0	7.90 7.50	1600 700	43.6 13.5	<0.5	-															
PW2	Sep-94		Sam		343	<1.0	7.50	700	13.3	<0.5	+															
PW2	Apr-95	12	2	130	367	<1.0	7.50	1000	15.1	6 l																
PW2 PW2	Sep-95 Apr-96	13 88		197 77.7	493 267	<1.0 <1.0	7.40 7.45	1400 710	39 11.5	93.8 t	J															
PW2	Sep-96	12		61.4	358	<1.0	7.43	753	14.1	<0.5																
PW2	Apr-97	12	0.	37.1	356	<1.0	7.90	600	13.7	1.4																
PW2 PW2		D 12		40.2 238	356	<1.0 <1.0	7.9 8.00	600 1500	13.8 49.4	1.2 2.6																
PW2	Sep-97 Apr-98	10		98.4	605 321	<1.0	7.59	765	14.2	1.8																
PW2	Sep-98	17	'3	245	625	<1.0	7.52	1670	47	<0.5																
PW2 PW2	Apr-99 Sep-99	11		103 277	353 521	<1.0 <1.0	7.72 7.34	678 1770	14.1 36.7	1.1 t				-				-								$\vdash \vdash \vdash$
PW2		D 14		276	516	<1.0	7.34	1770	37.8	2.8								<u> </u>								\vdash
PW2	Apr-00	13	0	136	395	<2.0	7.28	1070	17.1	1.3 l																
PW2 PW2	Sep-00 Apr-01	15		132 74.4	463 315	<2.0 <2.0	7.16 7.16	1190 717	18.5 12.8	1.5				 				-	-							\vdash
PW2	Sep-01	15		291	591	<1.0	7.16	1930	47.2	1.0																\vdash
PW2	Apr-02	10	14	134	309	<1.0	7.15	855	11.9	2.6 l																
PW2 PW2	Sep-02 Apr-03	15		300 119	585 321	<1.0	7.15 7.67	1760 842	51 15	2.6 t	1		-	1				-	-				-			\vdash
PW2	Sep-03	1 14		326	548	1	7.71	1710	44	5.5	1							<u> </u>								\vdash
PW2	May-04	1 10)1	95.6	305	<2	7.63	854	13.1	<1.0																
PW2 PW2	Sep-04 Apr-05	95 69		116 58.6	296 283	<2 <2	7.71 7.18	802 717	13.8 26.9	<1.0	-							-								\vdash
PW2	Nov-05	67		60.4	273	<1.0	6.99	620	25.6	<1.0	1							<u> </u>								
PW2	Apr-06	11	3	107	340	<1.0	8.29	824	13.6	1 ι	J															
PW2 PW2	Nov-06 Apr-07	11 89		101 71	360 270	<1.0 <1	7.08 7.50	867 701	16 10.4	3				-				-								
PW2	Nov-07	11		55	410	2U	7.56	885	31.4	1								 								
PW2	Apr-08	86	.3	89	260	2	-	-	11.5	2																
PW2	Nov-08	7 Not	Sam	pled																						

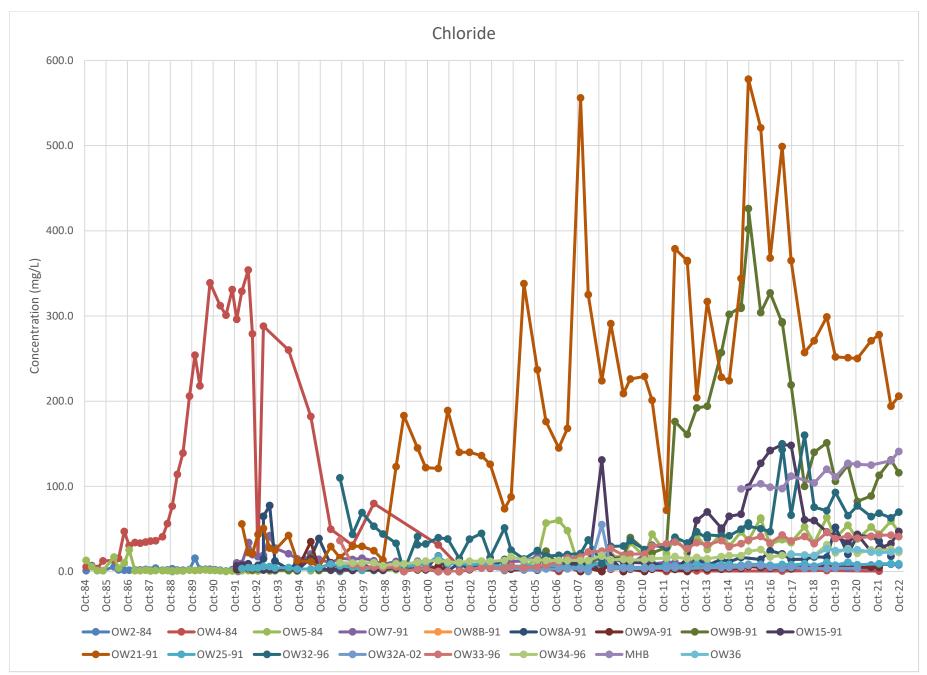
Well	Sampling Date	Notes	Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	T KN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside U	Jnits (2013 -)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PW2	Apr-09	81.4	70.6	244	<1	7.64	638	10	2.8																
PW2	Nov-09	8 Not Sam																							
PW2	Mar-10	95.9	127	281	<1.0	-	•	10	2.8																
PW2	Nov-10	101	169	301	<1.0	7.14	1020	11.9	4.4																
PW2	Mar-11	94	142	288	2.1	7.95	-	13.1	2.5																
PW2	Dec-11	Not Sam	pled																						
PW2	Apr-12	Not Sam	pled																						
PW2	Nov-12	Not Sam	pled																						
PW2	May-13	Resident	t not present -		9																				
PW2	Oct-13	94.7	131	285	<0.001	7.56	891	11.7	2.0																
PW2	Jun-14	Resident	t not present -	no sample	Э																				
PW2	Nov-14	Resident	t not present -	no sample	Э																				
PW2	May-15	105	137	317	<0.001	7.23	988	13.3	1.8																
PW2	Sep-15	Resident	t not present -	no sample	9																				
PW2	Apr-16	Resident	t not present -	no sample	Э																				
PW2	Oct-16	Resident	t not present -	no sample	Э																				
PW2	Apr-17	78.3	123	238	<0.001	7.59	683	10.2	2.4																
PW2	Sep-17	52.4	81	170	<0.001	7.88	515	9.39	1.9																
PW2	May-18	Resident	t not present -	no sample	e																				
PW2	Oct-18	87.9	142	287	<0.001	7.53	509	16.3	2																
PW2	May-19	83.0	83.0	247	<0.001	7.28	720	9.56	2	314					71.3	1.28	<0.25								
PW2	Oct-19	Not Sam	pled - Reside	nt indicate	d that well is o	dry																			
PW2	May-20		9 - no sample																						
PW2	Oct-20		9 - no sample																						
PW2	Jun-21		9 - no sample																						
PW2	Nov-21	NA																							
PW2	May-22	NA																							
PW2	Oct-22	NA																							
Minimum		52.4	22.00	170	0.001	6.82	400	9.4	0.3	314					71.3	1.28	0.125								
Maximum		173	326	625	5.500	8.29	1930	51	93.8	314					71	1.28	0.125								
Average		111	122.2	362	0.694	7.49	932	20.8	3.1	314					71	1.28	0.125								

								ξ	E						Φ							Φ	eue			(Total)
Well	Sampling 5	40163	Salcium	Chloride	Hardness	Phenols	Hd blei-	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	3oron	ron	Manganese	Sodium	Vitrate	Vitrite	Ammonia	Z N	3enzene	m,p-Xylene	Ethylbenze	Toluene	o-Xylene	Xylene Mixture (T
	s (1981 - 2012) Units (2013 -)		mg/L mg/L	mg/L mg/L	mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
PW3	Feb-85	+	118	82.5	358	<1.0	7.46	865	15.4	1.8																
PW3 PW3	May-85		93 128	36.0 28.5	287 501	<1.0 <1.0	7.43 7.54	675 1850	13.2 44	1.7 0.7																
PW3	Feb-86 May-86		64.5	36.5	288	<1.0	7.54	660		0.08																
PW3 PW3	Aug-86 Nov-86		71.5 74.5	49.0 47.0	306 322	1 <1.0	7.58 7.49	865 720	31 33	1.3																
PW3	Feb-87		76.5	52.5	316	<1.0	7.51	780	30.4	1.1																
PW3 PW3	May-87 Aug-87		79.5 81	45.0 66.0	332 345	<1.0 <1.0	7.40 7.51	845 850	32.4 34.6	1.3																
PW3	Nov-87		92	96.8	375	<1.0	7.38	955	35.21	1.1																
PW3 PW3	Jan-88		36.9 36.7	76.5 75.9	346 347	<1.0 <1.0	-	-	31.16 31.67	0.9																
PW3	Aug-88	8	32.8	65.8	340.9	<1.0	7.30	835	32.49	1.5																
PW3 PW3	Nov-88 Feb-89		33.5 79.9	81.6 69.9	332.6 319	<1.0 <1.0	7.23 6.87	887 792	30.05 29	1.1								-	-			-				
PW3	May-89	7	79.3	69.1	314	1.5	7.23	764	28.1	0.9																
PW3 PW3	Aug-89 Nov-89		38.9 33.3	82.1 98.9	353 338	<1.0 <1.0	7.00 7.20	1140 765	31.7 31.4	1.4 1.1 U																
PW3	Feb-90	8	30.5	85.8	326	<1.0	6.72	740	30.3	0.7																
PW3 PW3	May-90 Aug-90		77.2 35.5	74.9 77.9	314 337	<1.0 <1.0	7.00 7.35	638 660	29.3 29.8																	
PW3	Nov-90		80	76.5	320	<1.0	7.40	600	29.2	1.1																
PW3 PW3	Nov-90 [79.3 30.1	76.5 70.9	319 318	<1.0 <1.0	7.4 8.10	600 651	29.3 28.6	1																
PW3	May-91		ot Samp		311	.4.0		04.4	20.7	0.0																
PW3 PW3	Aug-91 Nov-91		77.2 78.9	74.1 76.6	323	<1.0 <1.0	7.36 7.5	814 582	28.7 30.5	0.8 1 U																
PW3 PW3	Feb-92		78.1	73.8	328	<1.0	7.19	560	32.1	0.9																
PW3	May-92 Aug-92		77.0 91.0	66.7 32.1	320 411	<1.0 9.0	7.40 7.70	506 1330	30.9 44.5	1.1																
PW3 PW3	Nov-92 Feb-93		78.7 311	60.0 57.4	329 76.4	<1.0 <1.0	7.65 7.55	505 430	32.1 29.3	0.7																
PW3	May-93		58.9	43.9	294	<1.0	7.55	680	29.6	<0.5 <0.5																
PW3 PW3	Aug-93		71.1	60.6 53.6	299 314	<1.0 <1.0	7.90 7.30	800 700	29.4 30.1	<0.5 <0.5																
PW3 PW3	Apr-94 Sep-94		76.0 30.7	47.0	344	<2.0	7.80	700	34.7	<0.5																
PW3 PW3	Apr-95		78 35.8	64.5 51.7	339 345	<1.0 <1.0	7.2 7.3	700 1000	35 31.7	4.5 U 29.7 U																
PW3	Sep-95		30.6	58.6	341	<1.0	7.20	700	34	3.5 U																
PW3 PW3	Apr-96		67.3	55.1	285	<1.0 <1.0	7.76	732	28.5	<0.5																
PW3	Sep-96 Apr-97	(74.1 98.0	59.5 64.9	302 404	<1.0	7.65 8.10	673 800	28.3 38.6	<0.5																
PW3 PW3	Sep-97 Apr-98		30.6 70.8	56.2 62.1	331 296	<1.0 <1.0	7.80 7.92	700 750	31.5 28.9	0.8												1				
PW3	Sep-98	8	36.0	47.8	361	<1.0	7.33	634	35.5	<0.5																
PW3 PW3	Apr-99 [35.7 35.4	53 54.7	328 327	<1.0 <1.0	7.43 7.43	646 646	27.6 27.6																	
PW3	Sep-09	7	79.2	57.8	305	<1.0	7.16	725	25.9	2.2 U																
PW3 PW3	Apr-00		77.4 77.8	51.9	325 334	<2.0	7.52	727 728	32 33.9	2.6 U														·		
PW3	Sep-00 [) 7	75.2	43.5 42	321	<2.0 <2.0	7.45 7.45	728	33.9	<0.5 <0.5																
PW3 PW3	Apr-01	8	31.6	74.1 59.9	322	<2.0 <1.0	7.24	699	28.7 31.6	0.5 1.2														_		
PW3	Sep-01 Apr-02		32.3 13.0 J	62.8	336 292	<1.0	7.23 7.21	695 720	28	1 J,	U															
PW3 PW3	Sep-02	Ę	53.0	59	264	2	U 5.61	517 744	32	2.4 U																
PW3 PW3	Apr-03 Sep-03		73.0	63.3 53	319 313	1	7.24 7.54 ⁽¹⁾	542	29 30	1.5 5.3																
PW3	May-04	6	69.2	57.6	266	<2	7.65 (1)	713	27.4	<1.0																
PW3 PW3	Sep-04 Apr-05		99.1	50.7 118	279 299	<2 <2	7.76 7.28	643 822	26.9 12.5																	
PW3	Nov-05		59.7	89.1	196	<1	7.74	519		<1.0																

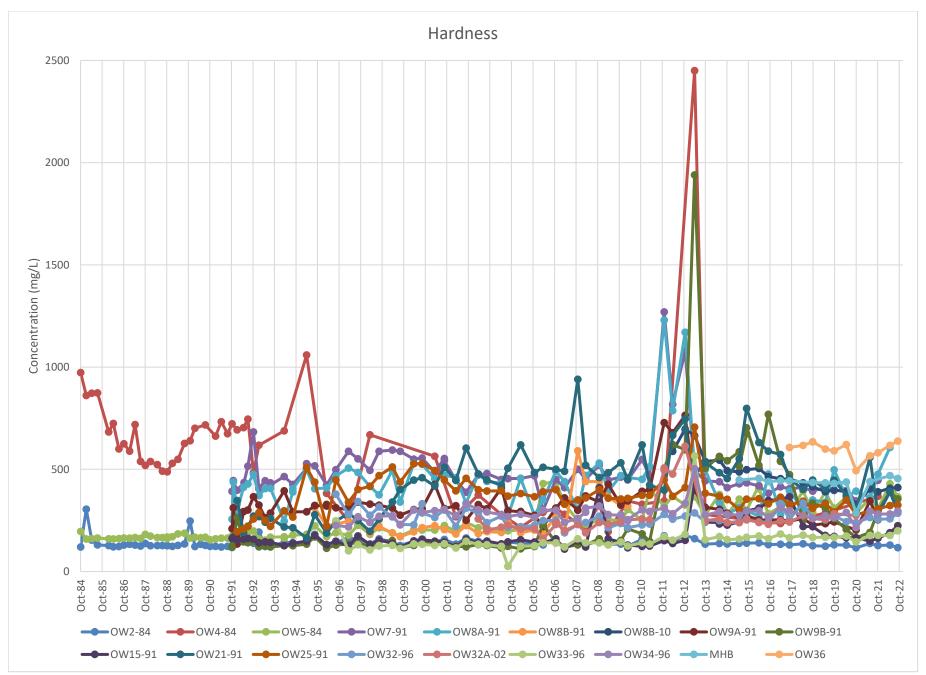
										,		_															
Well	Sampling Date	Notes	Calcium	Chloride		Hardness	Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)	r	ng/L	mg/L		mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside I	Jnits (2013 -)	r	ng/L	mg/L		mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PW3	Nov-05	D 5	58.0	88.8		191	<1	7.74	519	11.1	<1.0																
PW3	Apr-06	4	15.1	61		230	<1	8.20	700	27.9	1 U																
PW3			14.7	61		230	<1	8.20	700	28	1 U																
PW3	Nov-06		73.0	61		310	2 U	6.99	706	32	1																
PW3	Apr-07		33.6	61		260	<1	7.39	632	24.3	<1.0																
PW3	Nov-07		38.5 U	59		290U	2 U	7.61	695	29.6	<1.0																
PW3	Apr-08		71.4	64		300	1	7.44	722	30.3	<1.0																
PW3	Nov-08		31.3	18		330	<1	7.06	669	29.8	1																
PW3	Apr-09		6.1	66.1		277	<1	7.50	657	27.1	1.9																
PW3	Nov-09		73.3	59.5		301	2.0	7.35	745	28.6	<1.0																
PW3	Mar-10		74.9	58.5		286	<1.0	7.67	778	24.1	1.4																
PW3	Nov-10		31.4	58		328	<1.0	6.53	531	30.2	2.1																
PW3	Mar-11		237	113		717	<1.0	7.63	436	30.3	4.9																
PW3 PW3	Dec-11 Mar-11		33.7	2.8 60.5	_	286 315	<1.0 <1.0	7.67 7.87	603 753	30.9	1.4																
PW3 PW3	Dec-11		74.7	60.3		338	<1.0		712	32.4	1.9																
PW3 PW3	Apr-12		71.2	58.4		286	<1.0	7.93 7.38	689	26.1	1.5																
PW3 PW3	Apr-12 Apr-12		68.9	58.6		277	<1.0	7.38	689	25.6	1.5																
PW3	Nov-12		31.2	55.7		318	<1.0	6.75	574	28.0	1.4																-
PW3	May-13		64.3	62.8		269	<0.001	7.28	726	26.4	1.2																-
PW3	Oct-13	_			ont - r	no sample		7.20	720	20.4	1.2																
PW3	Jun-14					no sample																					
PW3	Nov-14					no sample																					
PW3	May-15					no sample																					
PW3	Sep-15					no sample																					
PW3	Apr-16					no sample																					
PW3	Oct-16					no sample																					
PW3	Apr-17					no sample																					
PW3	Sep-17					no sample																					
PW3	May-18	63	3.5	64.2		276				28.5	1																
PW3	Oct-18	Re	esident	not pres	ent - r	no sample	9																				
PW3	May-19	Re	esident	not pres	ent - r	no sample	9																				
PW3	Oct-19					no sample	9																				
PW3	May-20) - no sar																							
PW3	Oct-20			- no sar																							
PW3	Jun-21			- no sar	nple																						
PW3	Nov-21	N/																									
PW3	May-22		64.9	60.7		279	0.007			28.4	1	230					34.1	0.11	<0.05								
PW3	Oct-22	- 6	68.4	64.5		305	0.003	-		32.7	0.9	219					36.8	<0.05	<0.05						-		
Minimum		1	13.0	2.80	+	76	0.001	5.61	430	11.1	0.1	219					34.1	0.11	0.025								\vdash
Maximum			311	118		717	9.000	8.20	1850	45	29.7	230					37	0.11	0.025								
Average		_	81	62.1		316	0.744	7.43	724	29.5	1.5	225					35	0.11	0.025								
								•						•			•		•	•				•	•	•	

								1								1		1	1									
Well	Samplii Date	ž	Calcium		Chloride		Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	Units (2013		mg/L mg/L		mg/L mg/L		mg/L mg/L	μg/L mg/L		μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L µg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	mg/L μg/L	μg/L
PW4	Sep-96		59	П	1.44		300	<1.0	8.00	634	37.1	<0.5																
PW4 PW4	Apr-97 Sep-97	-	47.9 61.1		2.53 1.43		245 329	<1.0 <1.0	8.20 7.40	700 700	30.4 42.9	<0.5 <0.5																
PW4	Apr-98		56.2		1.98		286	<1.0	7.72	641	35.3	4.3																
PW4	Apr-98				1.62		290	<1.0	7.72	641	35.9	6.0																
PW4 PW4	Sep-98 Apr-99		Not Sa 65.4		1.77		309	<1.0	7.62	620	35.3	<0.5																
PW4	Sep-99		51.5		2.41	U	252	<1.0	7.33	704	29.8	2.4																
PW4 PW4	Apr-00 Apr-00	D	57.8 58.5		1.53		294 297	<2.0 <2.0	7.51 7.51	655 655	36.4 36.6	1.1																
PW4	Sep-00		59.5		1.95		306	<2.0	7.61	680	38.3	<0.5	5															
PW4	Apr-01		66.7	Н	3		339	<2.0	9.39	736	41.8	<0.5																
PW4 PW4	Apr-01 Sep-01	D	75.0 64.7	+	<3.0 <3.0	\vdash	359 330	<2.0 <1.0	9.39 7.32	736 675	41.6 40.8	9.0																
PW4	Apr-02		61	\Box	<3.0		310	<1.0	7.21	710	38.4	3.9																
PW4 PW4	Sep-02 Sep-02		13 17	+	2.1		197 204	<1.0	7.69 7.69	505 505	40 41	2.5																
PW4	Apr-03		58	$\pm \dagger$	4.25		326	1	7.08	701	36	1.7																
PW4	Apr-03	D		\perp	4.45		324	1	7.08	701	35	1.3																
PW4 PW4	Sep-03 Sep-03			+	3.7 3.75		317 317	1 1	8.11 8.15	592 592	35 35	4.3 4.6																
PW4	May-04	- 1	74.8		4.44		371	<2	7.69	828	44.7	<1.0																
PW4 PW4	May-04 Sep-04		74.8 60.1		4.81 1.94		370 303	<2 <2	7.78 7.89	827 663	44.6 37.2	<1.0 <1.0																
PW4	Apr-05		60.8		2.14		306	<2	7.38	727	37.4	<1.0																
PW4	Nov-05		56.6		1.79		280	<1.0	7.08	585	33.6	<1.0																
PW4 PW4	Apr-06 Nov-06		21.8 100	U	3		210 490	<1.0 6	8.20 7.38	765 321	38.7 59	2	J															
PW4	Apr-07		74.6		4		340	<1	7.56	723	37.2	2																
PW4 PW4	Nov-07 Apr-08		65.9 89.7		3 4		330U 430	1U <1	7.88 7.39	697 871	39.1 49.8	<1.0																
PW4	Apr-08	D	88.7		4		430	<1	7.39	871	49.9	1 .	,															
PW4	Nov-08		74.1		7		340	< 1	7.29	653	37.6	2																
PW4 PW4	Apr-09 Apr-09	D	85 85	+	7.7 7.7		402 402	<1 <1	7.39 7.39	783 783	46.1 46.1	1.4																-
PW4	Nov-09		72.5		<6.0		342	<1.0	7.27	790	39.1	3.2	J															
PW4 PW4	Nov-09 Mar-10		76.8 78	+	<6.0 5.7		356 341	3 J <1.0	7.27 7.97	790 910	39.8 35.5	2.1 3.1	J															
PW4	Nov-10		80.6	+	<2.0		374	<1.0	6.61	558	41.9	5.4																
PW4	Mar-11		75.3		2.6		357	<1.0	7.81	784	41.2	1.4																
PW4 PW4	Mar-11 Dec-11		73.5 77.9		2.6 <6.0	\vdash	359 356	<1.0 <1.0	7.93 7.76	784 723	42.6 39.2	1.6 1.8													 			
PW4	Apr-12		78.7		2.6		364	<1.0	7.40	752	40.7	1.2																
PW4 PW4	Nov-12 May-13		73.4 67.9		2.2 3.84		336 344	<1.0 <0.001	6.66 7.37	564 835	37.2 42.4	2.2 1.7																\vdash
PW4	Oct-13		63.3		2.00	H	311	0.001	7.58	732	37.1	1.1																
PW4	Jun-14		67.2		3.03		335	<0.001	7.38	806	40.6	1.1																
PW4 PW4	Nov-14 May-15		63.1 60.8	+	2.45 3.09	\vdash	310 299	<0.001 <0.001	7.67 7.34	740 761	37.0 35.8	1.1	_												 			\vdash
PW4	Sep-15		66.9		3.50		321	<0.001	8.75	605	37.5	1.1																
PW4 PW4	Apr-16		71.2 61.4		3.66 2.09		347 298	<0.001 <0.001	7.50 7.91	687 672	41.0 35.2	1.1																
PW4 PW4	Oct-16 Apr-17		64.3		2.09	H	320	<0.001	7.91	637	35.2	3.0 1.2																
PW4	Sep-17		65.1		2.10		317	<0.001	7.61	648	37.6	1.4																
PW4 PW4	May-18 Oct-18		Reside 65.2		ot presen 1.84	nt - no	o sample 306	<0.001	7.60	375.9	34.7	1.6								-	-							
PW4	May-19		73.6		4.76		357	<0.001	7.44	738	42.0	1.1	212					32.2	<0.25	<0.25								
PW4	Oct-19		63	П	2.10		308	<0.001	6.99	648	36.5	1.9	234					33.5	<0.25	<0.25								
PW4 PW4	May-20 Oct-20		56.9		no samp 2.23	oie	277	0.003	7.37	513	32.7	1.5	236					32.6	<0.10	<0.10								
PW4	Jun-21				no samp	ole																						

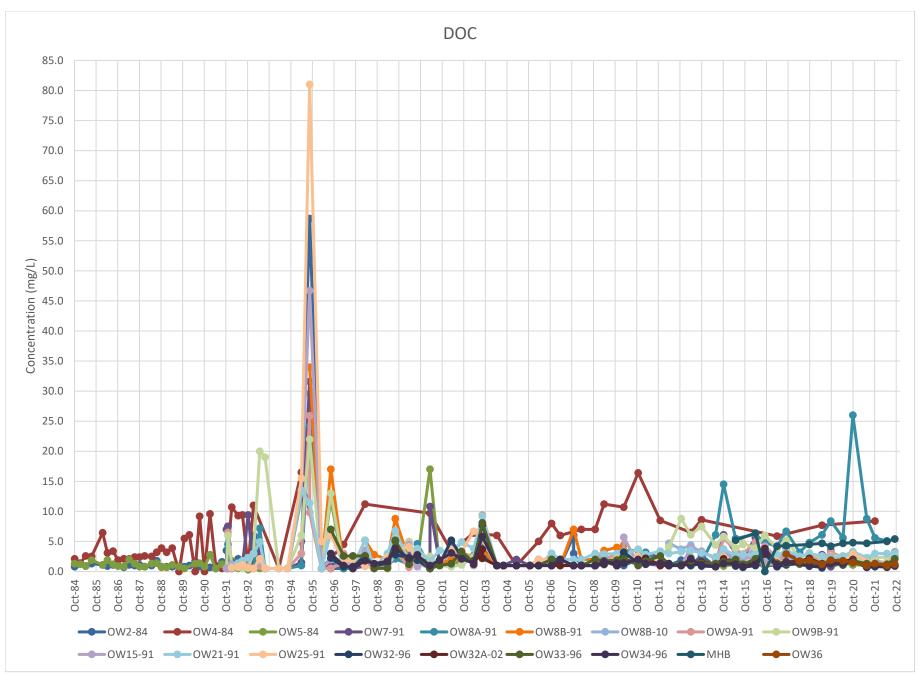
Well	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenois	Field pH	Field Conductivity	Magnesium	DOC		Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	TKN	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
CRA Units	(1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	n	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	
Burnside	Units (2013 -)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	n	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PW4	Nov-21		NA																								
PW4	May-22		75.7	3.91	370	<0.018			44.0	1.6	1	225					34.8	0.47	0.36								
PW4	Oct-22		76.2	2.02	349	<0.002			38.5	1	1	256					34.4	< 0.05	< 0.05								
Minimum			13.0	1.43	197	0.001	6.61	321	29.8	0.3	2	212					32.2	0.47	0.025								
Maximum			100	8	490	6.000	9.39	910	59	9.0	2	256					35	0.47	0.360								
Average			65	3.1	327	0.601	7.62	688	39.2	1.8	2	233					34	0.47	0.137								

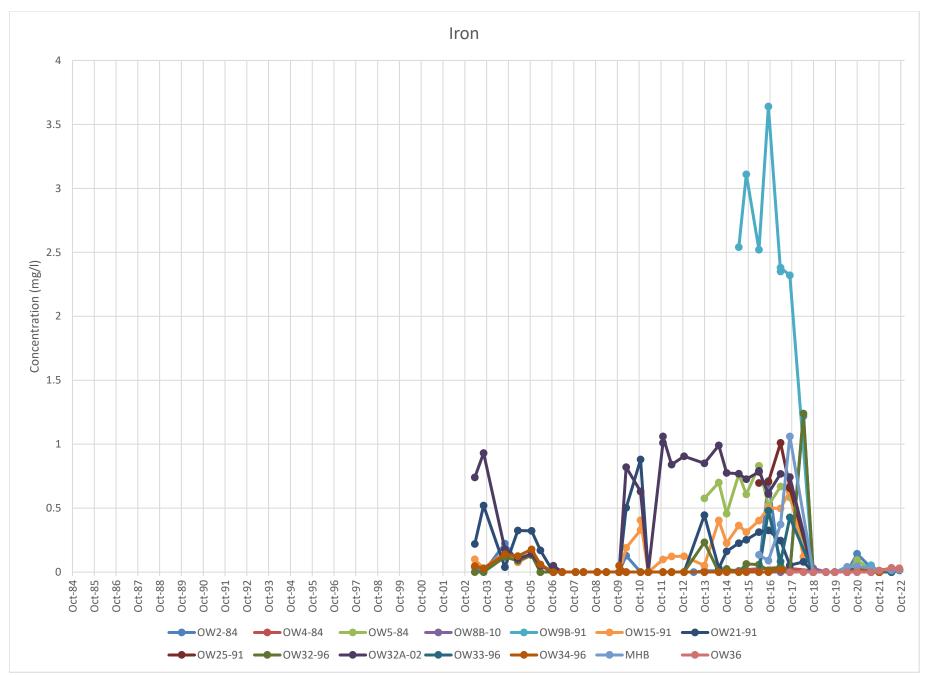


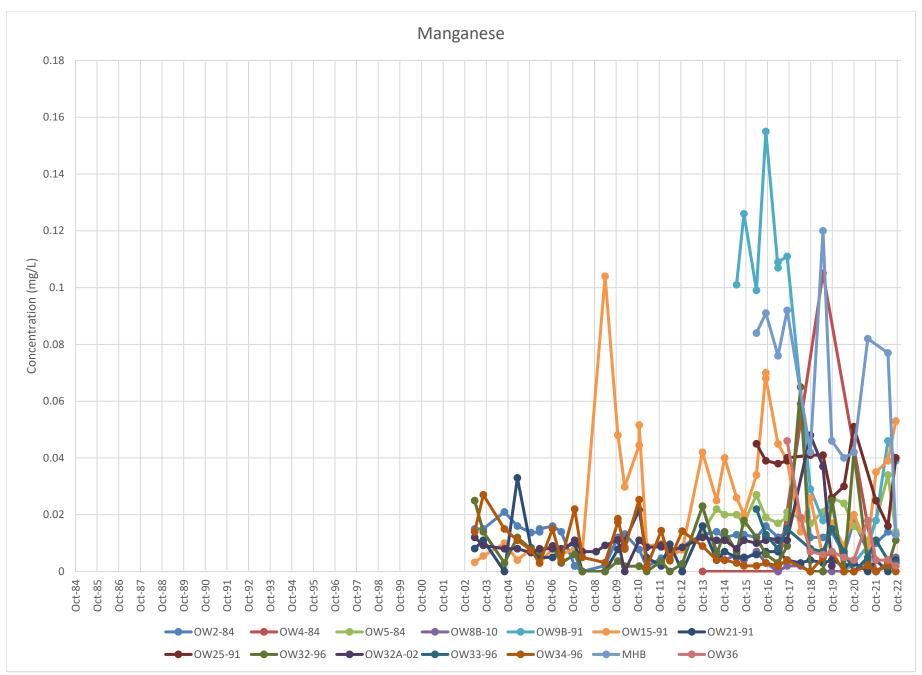
Well	Sampling Date	Votes	Calcium		Chloride		Hardness	Phenols	ield pH	Field Conductivity	Magnesium	000	Alkalinity	Sulphate	Soron	ron	Manganese	Sodium	Nitrate	Litrite	Ammonia	ΝΧ	senzene	m,p-Xylene	Ethylbenzene	Toluene	-Xylene	Xylene Mixture (Total)
CRA Units			mg/L mg/L		ng/L ng/L		mg/L mg/L	μg/L mg/L	ш.	μS/cm μS/cm	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L µg/L	mg/L µg/L	mg/L µg/L	mg/L µg/L	mg/L μg/L	µg/L
PW5	Aug-88		39.2	3	3.1		203	<1.0	7.57	487	25.4	1.4																
PW5	Nov-88		37.3		3.1		196	<1.0	6.81	483	24.9	0.9																
PW5 PW5	Feb-89 May-89		36.9 47.1		3.1 3.6		196 234	<1.0 1.0	7.21 7.63	494 567	25.1 28.2	0.8																
PW5	Aug-89		35.9		2.9		188	<1.0	7.13	428	23.9	0.8																
PW5	Nov-89		34.4		3.2		185	<1.0	7.70	440	24.0	20 L	ı															
PW5 PW5	Feb-90 May-90		34.6 0.3		4.0 3.2		187 1	<1.0 <1.0	7.57 7.50	437 495	24.4 0.1	0.3																
PW5	Aug-90		41.6		2.6		209	<1.0	7.43	420	25.6	<0.1																
PW5	Nov-90		39.2		3.1		198	<1.0	7.40	370	24.3	0.7																
PW5 PW5	Feb-91 May-91		Not Sar 41.5		1.6		208	<1.0	7.50	380	25.3	0.6																
PW5	Aug-91		38.1		2.3		198	<1.0	6.47	543	25.3	0.6																
PW5	Nov-91		43.4		3		224	<1.0	7.50	237	28.0	0.9 ι	1															
PW5 PW5	Feb-92 May-92		41.9 59.3		2.8	U	219 306	<1.0 <1.0	7.35 7.63	400 492	27.8 38.4	0.6 1.2	+															\vdash
PW5	May-92		58.9		2.3		304	<1.0	7.63	492	38.1	1.0																
PW5	Aug-92		55.2	2	2.7		282	<1.0	7.74	875	34.9	0.8																
PW5 PW5	Nov-92 Feb-93		56.4 41.0		2.4		281	<1.0 <1.0	7.35	390 340	34.1 25.7	0.7 <0.5																
PW5 PW5	May-93		49.9		2.8		208 246	<1.0	7.62 7.60	425	29.5	4.7 J																
PW5	May-93	D	49.1	2	2.8		250	<1.0	NA	NA	30.9	1.5 L	ı															
PW5	Aug-93		52.3		2.9		1	<1.0	7.80	500	32.2	<0.5																
PW5 PW5	Aug-93 Apr-94		51.6 43.8		.23		266 222	<1.0 <1.0	7.6	500	33.3 27.4	<0.5 <0.5																
PW5	Sep-94		41.6		.64		212	<2.0	8.1	400	26.3	<0.5																
PW5	Apr-95		43.5		4.8		224	<1.0	7.5	400	27.9	3 ι																
PW5 PW5	Sep-95 Sep-95	n	52.6 52		.64		250 255	<1.0 <1.0	8	500 500	28.8	11.2 J																
PW5	Apr-96		47		.04		237	<1.0	7.73	581	29.1	<0.5	,0															
PW5	Sep-96		53.2		4		257	<1.0	8.03	550	30.2	<0.5																
PW5 PW5	Apr-97 Sep-97		43.2 54		.79		250 270	<1.0 <1.0	8.30 8.00	500 500	34.6 32.8	0.6 <0.5																
PW5	Sep-97	D	54.6		NA		282	<1.0	8.00	500	35.4	<0.5																
PW5	Apr-98		45.5		.62		235	<1.0	7.62	530	29.5	0.9																
PW5 PW5	Sep-98 Apr-99	\vdash	55.4 46		.63		276 236	<1.0 <1.0	7.66 7.73	502 510	33.5 29.4	<0.5 <0.5																
PW5	Sep-99		40.1		.23		199	<1.0	7.59	529	24.1	1.8	1															
PW5	Apr-00		46.6		.22		242	<2.0	7.84	541	30.5	1.8 L	I															
PW5	Sep-00		55.8		.32		285	<2.0 <2.0	7.57	616 573	35.3 34.4	<0.5																
PW5 PW5	Apr-01 Sep-01		58.9 61.0		3.9	\vdash	289 309	<1.0	7.16 7.41	635	38.8	0.9	+															
PW5	Sep-01	D	61.9	- 3	3.2		315	<1.0	7.41	635	31.6	1.3																
PW5 PW5	Apr-02		46.9 46.4		9.3 9.7	\vdash	247 244	3 U <1.0	7.23 7.23	581 581	31.5 31.2	2.5 J	,U															\vdash
PW5 PW5	Apr-02 Sep-02	ט	37		9.7 6.4	\vdash	244	2.5	6.98	464	31.2	3.9 t	,															$\vdash \vdash \vdash$
PW5	Apr-03		51		.05		287	1	7.53	600	34	1.4																
PW5	Sep-03	Ш	54		0.9		265	1	7.65 (1)	433	33	6.0																
PW5 PW5	Apr-04	\vdash	49 46.7		12 9.2	\vdash	254 249	<2 <2	7.83 ⁽¹⁾ 7.95	591 543	31.9 32.2	<1.0 <1.0																
PW5 PW5	Sep-04 Sep-04	D	46.7		9.2	H	249	<2	7.95	543	31.8	<1.0																
PW5	Apr-05		54.9	1	0.2		281	<2	7.29	652	34.9	<1.0																
PW5	Apr-05	D	54		0.1		279	<2	7.29	652	35	<1.0																
PW5 PW5	Nov-05 Apr-06		47.7 38.8		6.4 16	\vdash	251 240	<1 <1	7.59 8.31	533 602	32 35.2	<1.0	,															
PW5	Nov-06	Шt	52		24		280	2 J,U		613	37	2.0																
PW5	Nov-06	D	53		24		290	10 J	-		38	1.0																
PW5 PW5	Apr-07 Nov-07	\vdash	49.8 68		24 35		250 330	<1 2 U	7.48 7.81	520 665	31 39.5	<1.0 <1.0						<u> </u>			-							
PW5	Apr-08		56.2		27		290	<1	7.53	635	35.9	<1.0																
PW5	Nov-08		60		<2		300	<1	7.24	608	35.4	1																

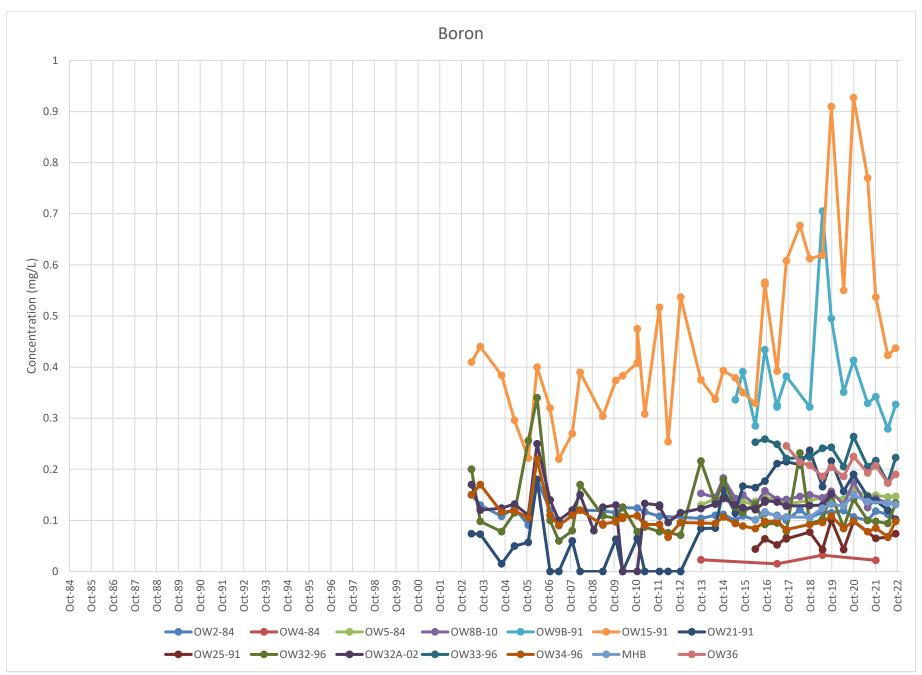


Well	Sampling Date	Notes	Calcium		Chloride	200		Phenols	Field pH	Field Conductivity	Magnesium	DOC	Alkalinity	Sulphate	Boron	Iron	Manganese	Sodium	Nitrate	Nitrite	Ammonia	N H	Benzene	m,p-Xylene	Ethylbenzene	Toluene	o-Xylene	Xylene Mixture (Total)
	(1981 - 2012) Units (2013 -)	\vdash	mg/L	mg		m		μg/L		µS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m a/l	m m //		m a/l	mg/L	mg/L	mg/L	mg/L	mg/L	
PW5	Nov-08	D	mg/L 59.9	mg.		3(mg/L		μS/cm	mg/L 35.9	mg/L 1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L
PW5	Apr-09		55	25.		27		<1	7.62	577	33.4	1.4																
PW5	Nov-09		63.2	9.4		30)4	<1	7.32	756	35.5	2.0																
PW5	Mar-10		61.3	11.		2		<1.0	7.78	1000	29.9	1.9																
PW5	Mar-10	D	65.5	11.	_	29		<1.0	-		32.9	1.6																
PW5 PW5	Nov-10 Nov-10		67.1 67.7	12.		32		<1.0 <1.0	6.65	505	37.9 38	1.6 1.8									-							
PW5	Mar-11	D	56.8	23.		28		<1.0	7.96	705	35.7	1.7	+								-							\vdash
PW5	Dec-11		80.1	9.9		3		<1.0	7.93	707	37.9	1.3						+			 							
PW5	Dec-11	D	80.4	10.		36		<1.0	-	-	41	1.3																
PW5	Apr-12		59.8	38.		30)3	<1.0	7.41	693	37.2	<1.0																
PW5	Nov-12		63.2	33.		3.		<1.0	6.76	554	37.9	<1.0																
PW5	Nov-12	D	63.7	36.		3.		<1.0	- 7.45	-	37.5	1									<u> </u>							igsquare
PW5 PW5	May-13 Oct-13	\vdash	57.7 63.6	26. 14.		3		<0.001 0.001	7.45 7.63	720 699	36.5 36.9	2.2					-				-			-				
PW5	Jun-14	\vdash	57.0	31.		29		<0.001	7.63	699	36.8	0.8		<u> </u>			1	+			 			 				\vdash
PW5	Nov-14		56.4	37.		29		<0.001	7.60	678	37.5	1.0																
PW5	May-15		56.7	29.		29		<0.001	7.54	732	36.2	1.1																
PW5	Sep-15		64.4	16.	3	3	19	<0.001	9.02	619	38.5	1.0																
PW5	Apr-16		60.0	32.		29		<0.001	7.87	604	36.2	1.1																
PW5	Oct-16		58.8	9.2		29		<0.001	7.99	582	34.9	3.4									_							
PW5 PW5	Apr-17		58.4	36.		29		<0.001	7.58 7.79	600	36.4	1.2	_								-							
PW5	Sep-17 May-18		55.0 55.9	4.8		28		<0.001	7.79	561 595	33.7 35.2	1.2	+								1							
PW5	Oct-18		60.5	6.0		29		<0.001	7.65	338.1	33.9	1.1																
PW5	May-19		53.9	9.4		2		<0.001	7.66	685	33.1	1.1	195					29.4	<0.05	<0.05								
PW5	Oct-19		58.4	7.7		28		<0.001	7.25	589	34.8	1.7	198					31.1	<0.25	< 0.25								
PW5	May-20			9 - no s	ample																							
PW5	Oct-20		51.5	9.1		20	32	0.002	7.85	493.5	32.4	2.0	201					30.6	<0.10	<0.10								
PW5	Jun-21	-		9 - no s	ample	-															-							
PW5 PW5	Nov-21 May-22	H	NA 58.8	24.4	10	29	20	<0.008			34.8	1.1	202					31.3	<0.05	<0.05	-							
PW5	Oct-22		72.2	3.9		3		<0.001			41.3	1.8	193					32.9	<0.05	<0.05	 							
				1									1.00															
Minimum			0.3	1.6	0	—	1	0.001	6.47	237	0.1	0.1	193					29.4	0.00	0.025								
Maximum			80	39		36		10.000	9.02	1000	41	20.0	202					33	0.00	0.125								
Average			52	11.	6	20	31	0.671	7.58	553	32.4	1.5	198					31	<0.05	0.050								
J																												
Notes:																												
mg/L	milligrams p						OC .	dissolved organ	ic carbon				Dry			e of samplin			RDL	reported d								
μS/cm μg/L	micro-sieme micrograms			e		Al		Ontario Drinking		ity Standard	s		NA NA	not analyz		btain a samp	le		MDL <1.0	not detect) or PDI					
U				but was	not dete			reported samp		n limit			-	TIOL arrany2	leu					not detect	above:	Stated IVIL	LOINDL					
J								al value is the ap			of the ana	yte in the	sample															
J,U					reporte	d samp	e quar	ntitation limit. H	lowever, the	reported san	ple quant	tation limi	t is approxir	nate and ma	ay or may no	ot represent t	he actual lim	it of quant	itation nece	essary to acc	curately a	nd precis	ely measure the	e analyte in the	sample			
1	pH was mea																											
3	these results											\vdash						1										ļ
4	these results these results						nd are	suspected as be	eionging to C	vv /-91		\vdash					-							-	1			\vdash
5							nd are	suspected as be	elonging to C	W4-84		\vdash						+			 							\vdash
6	well inaccess																	1										
7	no permissio																											
8	well pump no																											
	e - maximum a								<u> </u>			\vdash																
							_	ed result is less t		n		\vdash						-			-			-				
Bedrock backgr								/2-84 and OW2	J-91									+										\vdash
								March 2011 tak	en from over	burden well.	Samples	after Augu	st 2011 tak	n from drill	ed bedrock v	well.												
					٠.50												•		•	•	•	•	•	•				









APPENDIX E: HISTORICAL SURFACE WATER QUALITY ANALYTICAL RESULTS (TABLES & GRAPHS)

																			ı				
Location	Sampling Date	Votes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	ron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	ISS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units	(1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	nits ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP1-93	May-85		73	64	328	5.5	8.39	920	35.4	559.7	3.9	0.055			0.9	0.17	21						
SP1-93	Aug-85		80	272	365	5	7.57	1580	40	970	1.56	0.085			1.32	0.266	38						
SP1-93 SP1-93	Feb-86 May-86		97.5 43.5	200 53	320 181	1.5 1.5	7.86 8.32	1000 520	18.6 17.6	726 371.4	5.6	0.28			3.85 0.19	0.27 0.016	210 3.7						
SP1-93	Aug-86		91	305	376	1.5	8.00	1240	36	764	1.1	0.005			0.19	0.010	8.1						
SP1-93	Nov-86		97.5	34	324	<1.0	8.08	610	19.4	425.9	1.82	<0.005			0.28	0.024	8.3						
SP1-93	May-87		97.5	235	395	1	7.59	1520	36.6	796	4.76	0.13			0.06	0.315							
SP1-93	Aug-87		71.5	138	274	1	7.51	950	23	614	6.9	0.015			3.04	0.336	97						
SP1-93	Nov-87		99.2	148.6	405	<1.0	7.78	1300	38.2	714	0.88	0.011			0.8	0.044							
SP1-93 SP1-93	May-88		83.5 84.1	89.0 90.0	279.5 370.5	<1.0 <1.0	7.30 7.45	1044	17.18 38.89														
SP1-93	Aug-88 Nov-88		63.7	21.1	218	<1.0	6.24	434	14.25														
SP1-93	Feb-89		83.6	53.2	269	1.5	7.56	587	14.25	386	2.48	0.148			0.34	0.014	10						
SP1-93	May-89		87.4	136	338	1	7.97	920	29.1	620	1.58	0.034			0.33	0.068	7.7						
SP1-93	Aug-89		73.5	127	352	1	7.40	1020	40.8	734	2.04				1.88	0.128	71						
SP1-93	Nov-89		95.7	183	338	1.5	7.70	770	24	500+	1.76				2.8	0.1	129						
SP1-93	Feb-90		99.1	44.8	358	2.5	7.22	557	26.7	428	4.12				3.6	0.14	169						
SP1-93	May-90		96.2	115	329	<1.0	7.45	737	21.5	491+	4.52				0.37	0.033	21						
SP1-93 SP1-93	Aug-90 Nov-90		88.9 136	67.1 52.2	320 457	<1.0 8.5	7.76 7.90	660 340	23.7 28.4	429 221	2.96	0.039			0.76 20.4	0.03 0.47	22 >200						
SP1-93	Feb-91		130	JZ.Z	401	0.5	1.50	340	20.4	221	2.90	0.039			20.4	0.47	>200						
SP1-93	May-91		87	178	339	<1.0	8.05	977	29.5	772	3.84	0.02			1.45	0.207	45						
SP1-93	Aug-91		101	167	429	<1.0	6.78	1255	42.9	812	3.2	0.053			4.5	0.166	192						
SP1-93	Nov-91		850	887	2842	<1.0	7.80	2050	174	2314	23	0.169			127	4.44							
SP1-93	Nov-91		128	138			7.80	2050	48.2	815		0.28			10.5	0.477	270	0.692	500				
SP1-93	Dec-91		92.5	114	004	0.5	8.41	684	22.2	642	0.0	0.29			1.18	0.058	36	0.109	22				
SP1-93 SP1-93	Feb-92 May-92		148 76.4	365 118	691 281	2.5 2.0U	7.80 8.59	492 580	78 21.9	320+ 377+	0.9 2.40U	0.768 0.038U			0.27 1.26	0.117 0.137	3.9 28						
SP1-93	Aug-92		97.6	92.5	343	4.5	8.22	1430	24.1	550	3	0.0380			2.22	0.103	76.2						
SP1-93	Aug-92	D	97.7	91.9	344	3.0	8.22	1430	24.2	550	3	0.009			2.76	0.122	99.6						
SP1-93	Nov-92		75.9	51.7	256	21	7.98	345	16.1	224	2.8	0.052U			5.48	0.158	181.5						
SP1-93	Feb-93		19.1	170	58.4	<1.0	8.46	440	2.6	570	4.0	0.25			3.75	0.75	45						
SP1-93	May-93		81.2	109	345	2.8	8.70	860	34.6	574	3.0	0.14			0.7	0.12	18.1						
SP1-93	Apr-94		80.5	59.6	259	<1.0	8.50	700	14.2	444	<2.0	<0.02			0.27	0.05	21	0.133	15				
SP1-93 SP1-93	Sep-94 Apr-95		82.3 79.7	201	373	<2.0*	8.50 8.20	1200 600	40.6 12.2	844 411	<2.0 <2.0	<0.01			0.24 0.19	0.07 0.04	6.5 25	<0.10 0.18	13				
SP1-93	Sep-95		98.2	188	441	<1.0	8.00	1100	47.6	812	<2.0	0.07			0.13	0.04	8.5	0.10	4				
SP1-93	Sep-95	D		186	429	<1.0	8.00	1100	47.4	844	<2.0	<0.01			0.15	0.38	0.93	0.02	6				
SP1-93	Oct-95	2		95.6			8.78 ⁽¹⁾												396				
SP1-93	Apr-96		75.8	94.1	265	<1.0	8.48	697	18.4	492	<5.0	0.07			0.218	0.023	10.8	<0.01	13				
SP1-93	Apr-96	D		87.2	261	<1.0	8.48	697	18.2	490	<5.0	0.07		·	0.218	0.023	10.8	<0.01	18				
SP1-93	Sep-96		85.6	126	366	<1.0	8.4	1140	37	790	1.43	0.034			0.46	0.039	16.2	0.08	14.4				
SP1-93	Oct-96	2	400	46.2	400		8.30 ⁽¹⁾	600		=									196				
SP1-93 SP1-93	Apr-97		136 104	204	498 446	<1.0 <1.0	9.5	1200 1700	38.6 45.3	700 1250	2.5	<0.004			0.16 0.256	0.047 0.177	4.4 18.3	0.06 0.11	7				
SP1-93 SP1-93	Sep-97	2	104	375 103	440	<1.0	7.60 8.06 ⁽¹⁾	856	40.3	1250	<5.0	0.023			0.256	0.177	10.3	0.11	13 5				
SP1-93 SP1-93	Apr-98 Apr-98	2	85.6	103	302	<1.0	8.42	981	21.4	652	<4.0 UJ	0.078U			0.261	0.04	9.4	0.07	14				
SP1-93	Sep-98		109	203	475	<1.0	8.22	1450	49.2	854	2.1	.038U			0.327	0.04	12.9	0.440 U	7				
SP1-93	Sep-98	D	112	201	487	<1.0	8.22	1450	50.4	896	3.7	0.042U			0.307	0.063	13.5	0.440 U	8				
SP1-93	Apr-99		94.8	85.5	356	<1.0	8.55	815	29	592	<6.0	0.005			0.099	0.029	2.6	0.150 U	<1				
SP1-93	Jun-99	2		78															4				
SP1-93	Sep-99		85.9	116	366	<1.0	7.82	1300	37	882	<6.0	0.123U			0.357	0.052	16	0.18	10				
SP1-93	Apr-00	2	106	108 50.2	403	<2.0*	8.33 7.65	1040 519	33.6	644	<4	<0.009			0.087	0.0359	2.5	0.03	74				
SP1-93 SP1-93	Jun-00 Sep-00	2	94.2	71.1	346	<2.0*	8.07	840	26.8	195	4.5	0.091			0.304	0.068	0.5	0.1	15				
OF 1-93	10ch-00		J4.Z	11.1	540	\ ∠ .U	0.07	040	20.0	130	+.ე	0.091			0.304	0.000	0.0	U. I	10	İ	I		

Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units	(1981 - 2012))	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside U	nits ('13 - '14))	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP1-93	Apr-01		105	142	350	<2.0*	7.79	950	21.3	664	<4.0	< 0.05			0.405	0.106	19	<0.10	40				
SP1-93	Jun-01	2		102			7.73	950											12				
SP1-93	Sep-01		95.3	265	434	<1.0	7.73	1660	47.5	921	5	0.13			0.265	0.129	9.8	0.11	3				
SP1-93	Apr-02		80.5	147	272	<1.0	7.76	920	17.2	587	<4.0	0.08			0.2	0.032	12.2J	<0.01	20				
SP1-93	Apr-02	D	80.3	146	271	<1.0	7.76	920	17.1	584	<4.0	0.09			0.2	0.032	27.0J	0.01	18				
SP1-93	Sep-02		79	250	337	<1.0	6.20	1050	34	958	3.7	0.57			1.7	0.16	95	<0.01	133				
SP1-93	Oct-02	2		590			7.85	2510											82				
SP1-93	Apr-03		98	135	300	1	8.35	940	23	503	<3.0	<0.05			0.5	0.038	12.4	0.04	20				
SP1-93	Jun-03	2		173			8.12	1080											23				
SP1-93	Sep-03		130	442	584	1	8.17	2080	42	1340	<3.0	<0.5			0.58	0.14	21	0.09	28				
SP1-93	Sep-03	D	130	441	585	1	8.18 (1)	2080	41	1400	<3.0	<0.5			0.48	0.14	25.9	0.08	35				
SP1-93	May-04		86.8	74.4	281	<2.0*	8.30/8.13 ⁽¹⁾	670/740 ⁽¹⁾	15.6	462	<5.0	0.03		0.002/0.0014	0.356	0.028	3.1 J	0.09	15				
SP1-93	Sep-04		107	506	435	<2.0*	8.33	2340	40.6	1430	<5.0	< 0.02		< 0.0015	0.806 UJ	0.243 UJ	2.5 J	0.21	<12				
SP1-93	Sep-04	D	107	489	438	<2.0*	8.33	2340	41.5	1430	<5.0	<0.02		< 0.0015	0.570 UJ	0.132 UJ	2.0 J	0.2	<12				
SP1-93	Apr-05		75.4	89.4	240	<2.0*	8.13	717	12.7	708	<5	0.02		0.00039	0.505	0.028	1.6	0.05	<12				
SP1-93	Jul-05	2		112			8.45	756											<12				
SP1-93	Nov-05		89.6	141	297	<1.0	7.58	940	17.8	492	<5	0.09		0.00031	0.86	0.03	5.1	0.06	20				
SP1-93	Apr-06		70	81	230	<1.0	9.49	704	14	440	<2	<0.05		<0.01942	<0.5 *	0.03	6	0.03 U	11				
SP1-93	Apr-06	D	72	92	240	<1.0	9.49	704	14	440	<2	<0.05		<0.01942	<0.5 *	0.03	6.7	0.03 U	12				
SP1-93	Jul-06	2		58			7.85	571											47				
SP1-93	Nov-06		95	66	310	<1.0	7.74	729	18	460	<2	<0.05		< 0.00033	0.12	0.024 U	5.1	0.064 U	3				
SP1-93	Nov-06	D	95	67	310	2	7.74	729	18	450	<2	<0.05		< 0.00033	0.13	0.023 U	5.7	0.083 U	3				
SP1-93	Apr-07		72.3	119	240	<1.0	8.72	709	13.3	440	3	<0.05		0.00326	0.21	0.021	3.4	0.086	19				
SP1-93	Nov-07		83.8	244	300	2	8.41	1410	21.3	780	<2	0.1		0.0022	0.47J	0.051	9.5	0.072	79				
SP1-93	Apr-08		65.9	74	210	<1.0	9.02	616	10.9	370	<2	<0.05		<0.00757	0.32	0.026	6.8	0.077	5				
SP1-93	Aug-08	2		147			7.97	779							4.3			0.12	85				
SP1-93	Nov-08		88.8	67	280	<1.0	7.15	668	14.5	390	<2	0.07		0.0001	0.41	0.018	5.6	0.052	5				
SP1-93	Apr-09		78.6	74.8	244	<1.0	8.36	556	11.5	384	3.2	0.077		0.005870	0.937	0.0428	19.2	0.118	22.4				
SP1-93	Nov-09		95.7	149	318	2	7.99	1060	19.2	612	2.3	<0.050		·	0.672	0.0626	12.4	0.0415	16.8				
SP1-93	Mar-10		Moved t	o SP1-10															-				

_	1							ı							1			ı					
Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	SQL	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1	1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Uni	its ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP1-10	Mar-10		82.6	102	257	<1.0	8.77	950	12.2	416	2	< 0.050	5.4		0.122	0.018	2.3	0.039	8.8				
SP1-10	May-10			111			8.38								< 0.050			0.051	3.6				
SP1-10	Nov-10		70.5	99.7	231	<1.0	7.25	550	13.3	446	5.1	0.051	8.3	0.00007	2.98	0.072	76	0.355	36.4				
SP1-10	Mar-11		77.6	118	254	1.5	8.58	882	14.6	466	< 2.0	< 0.050	4.8	< 0.00223	0.139	0.0146	2.7	0.0197	< 3.0				
SP1-10	Oct-11			48			8.27	648					11.5		0.854			0.0893	26.0				
SP1-10	Dec-11		81.4	39.2	251	<1.0	8.24	556	11.7	350	< 2.0	0.068	4.9	0.00365	0.850	0.0211	26	0.0716	10				
SP1-10	Apr-12		62.3	12.9	239	<1.0	8.38	1590	20.2	882	<2.0	0.096	8.6	0.00365	0.381	0.0668	139	0.0363	12				
SP1-10	Apr-12	D	62.6	12.9	240	<1.0	8.38	1590	20.4	884	<2.0	0.095	8.6	0.00365	0.398	0.0689	139	0.0334	12				
SP1-10	Aug-12			306			8.53	1500							0.294		60	0	10.8				
SP1-10	Nov-12		90.1	151	294	<1.0	7.47	828	16.7	648	<2.0	< 0.050	4.8	<0.00018	0.113	0.0239	29	0.0181	< 2.0				
SP1-10	Nov-12	D	90.4	150	294	<1.0	7.47	828	16.7	646	<2.0	< 0.050	4.8	<0.00018	0.118	0.0239	29	0.0189	< 2.0				
SP1-10	May-13		56.8	93.0	191	<0.001	8.83	674	11.9	340	<5	0.02	15.0	3.12	0.10	0.017	6.2	0.04	<10				
SP1-10	Oct-13		70.3	41.9	218	<0.001	7.45	564	10.4	348	<5	0.11	7.6	0.47	0.19	0.017	15.3	0.12	14				
SP1-10	Jun-14		37.4	195	141	0.002	7.24	996	11.5	554	<5	0.89	20.9	6.49	0.30	0.072	21.5	0.34	16				
SP1-10	Nov-14		96.2	75.6	307	<0.001	7.45	720	16.2	456	<5	0.04	7.3	0.17	0.30	0.062	45.0	<0.02	39				
SP1-10	May-15		66.7	290	227	<0.001	8.39	1313	14.7	826	6.00	0.78	12.3	40.33	0.54	0.305	34.2	0.47	25				
SP1-10	Sep-15		14.0	633	69.3	0.004	NA	3952	8.35	1520	<5	0.95	16.67	NA	0.79	0.121	118	0.40	81				
SP1-10	Sep-15	D	13.6	627	66.8	0.004			7.98	1560	<5	1.00			0.79	0.124	109	0.42	70				
SP1-10	Apr-16		59.3	105	203	<0.001	8.59	650	13.3	374	<5	0.04	6.67	2.10	0.11	0.047	14.6	0.08	17				
SP1-10	Oct-16		46.8	176	151	<0.001	8.66	1276	8.23	586	<5	0.18	14.21	18.93	0.50	0.053	78.3	0.14	36				
SP1-10	Apr-17		62.5	74.6	203	<0.001	8.48	598	11.30	358	<5	0.02	11.56	1.19	0.18	0.030	12.9	0.06	10				
SP1-10	Sep-17		34.4	327	136	<0.001	8.65	1404	12.1	744	5	0.24	19.9	35.85	0.38	0.105	44.8	0.22	35				
SP1-10	May-18		34.9	158	141	0.001	9.25	778	13.1	472	<5	0.08	16.22		0.078	0.037	11.6	0.05	20				
SP1-10	Oct-18		87.2	84	280	<0.001	8.38	640	15.0	488	<5	0.02	11.6		<0.010	0.020	5.7	0.05	<10				
SP1-10	May-19		125.0	187	581	0.029			65.4	1650	73	0.40		0.009	0.742	0.248	617.0	3.40	482	943	<0.25	< 0.25	42.9
SP1-10	Oct-19		70.6	83.7	226	0.004	8.32	591	12.0	402	<5	0.03	NA	NA	0.366	0.048	42.0	0.19	28	199	1.50	< 0.25	40.00
SP1-10	May-20		82.9	86.9	268	<0.001	8.09	804	14.72	434	<5	< 0.02	20	< 0.001	0.174	0.027	2.2	0.05	<10	209	5.84	< 0.25	41.20
SP1-10	Oct-20		40.5	199	154	0.002	8.95	745	12.95	596	2	0.08	9.4	0.011	0.147	0.009	18.4	0.05	24	174	0.28	< 0.25	76.67
SP1-10	Jun-21		15.9	415	108	0.003	9.83	2274	16.70	816	<2	0.12	22.2	0.758	0.265	0.055	7.1	0.19	<10	194	< 0.07	< 0.05	154.00
SP1-10	Nov-21		161.0	10.9	506	0.009	7.58		25.30	328	19	0.11	7.17	0.001	21.8	3.110	512.0	1.33	324	294	0.33	<0.05	2.85
SP1-10	May-22		46.7	178	183	0.01	8.16	998	16.20	600	<2	0.07	18.1	0.047	0.2	0.034	4.9	0.06	<10	226	0.81	0.7	75.80
SP1-10	Oct-22		87.8	384	291	0.003	9.77	1602	17.50	1080	2	0.13	16.5	0.643	1.4	0.090	24.4	0.10	21	211	<0.07	<0.05	126.00
Minimum			13.6	10.9	66.8	0.001	7.24	550	8.0	328	2.0	0.02	4.8	0.0001	0.05	0.01	2.2	0.00	2.0	174	0.28	0.70	2.9
Maximum			161.0	633.0	581.0	1.500	9.83	3952	65.4	1650	73.0	1.00	22.2	40.33	21.80	3.11	617.0	3.40	482.0	943	5.84	0.70	154.0
Average			66.5	174.2	231.4	0.112	8.34	1089	15.9	664	11.8	0.23	11.7	5.80	1.15	0.17	74.9	0.27	50.7	306	1.75	0.70	69.9

Location	Sampling Date	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1981 - 2012)	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Ur	nits ('13 - '14)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP2-93	Oct-13	71.8	41.8	224	< 0.001	7.85	596	10.8	360	<5	0.08	7.9	0.88	0.25	0.027	15.2	0.11	22				
SP2-93	Jun-14	42.7	183	156	<0.001	7.24	1246	12.0	576	<5	0.36	23.6	3.19	0.43	0.069	16.1	0.25	18				
SP2-93	Nov-14	97.7	78.1	314	<0.001	8.43	782	17.0	466	<5	< 0.02	8.1	0.83	0.80	0.128	99.2	< 0.02	308				
SP2-93	May-15	63.1	312	226	<0.001	7.95	1664	16.7	846	7.00	0.44	25.2	21.47	0.89	0.170	48.3	0.42	40				
SP2-93	Sep-15	Dry																				
SP2-93	Apr-16	67.5	109	229	<0.001	8.61	672	14.7	406	<5	0.04	10.8	2.98	0.24	0.067	17.5	0.07	20				
SP2-93	Oct-16	53.6	199	173	<0.001	7.75	983	9.62	636	<5	0.07	17.07	1.23	0.75	0.077	38.6	0.15	18				
SP2-93	Apr-17	65.9	77.4	214	<0.001	8.44	637	11.90	372	<5	0.02	15.14	1.41	0.17	0.037	10.4	0.06	<10				
SP2-93	Sep-17	35.3	351	142	<0.001	8.47	1493	13.0	834	5	0.03	20.9	3.33	0.72	0.108	350	0.44	44				
SP2-93	May-18	40.0	158	159	0.001	9.05	828	14.3	518	<5	0.05	17.53		0.206	0.030	10.8	0.09	18				
SP2-93	Oct-18	93.3	82.6	296	<0.001	8.19	377.5	15.4	490	<5	<0.02	12.7		<0.010	0.018	11.9	0.05	13				
SP2-93	May-19	67.3	57.2	213	0.002	7.91	608	10.9	336	<5	0.03	22.03	0.001	<0.010	<0.002	13.7	0.08	13	223	3.12	< 0.05	28
SP2-93	Oct-19	68.5	78.7	221	0.004	7.85	544	12.2	432	<5	0.02	NA	NA	0.451	0.049	42.8	0.20	24	187	1.33	<0.25	37.9
SP2-93	May-20	83.0	83.3	270	<0.001	8.00	819	15.29	466	<5	< 0.02	17.1	< 0.001	0.176	0.037	3.2	0.07	<10	228	5.18	<0.25	41.5
SP2-93	Oct-20	49.83	188	182	0.001	7.82	776	14.03	598	2	0.02	11	< 0.001	0.577	0.051	8.2	0.06	16	194	<0.25	<0.25	70.5
SP2-93	Jun-21	29.20	356	152	0.002	8.85	1975	19.10	902	2	0.02	24.3	0.276	0.65	0.063	11.9	0.12	21	186	<0.07	< 0.05	146
SP2-93	Nov-21	93.60	48.5	300	0.011	8.05		16.10	428	<2	< 0.02	10.8	< 0.001	0.157	0.022	5.4	0.07	<10	271	2.81	< 0.05	29.7
SP2-93	May-22	47.90	176	189	0.013	7.71	967	16.90	626	<2	0.11	16.4	0.002	0.48	0.065	3.5	0.08	<10	246	0.48	0.67	77.4
SP2-93	Oct-22	NA																				
Minimum		29.2	41.8	142.0	0.001	7.24	378	9.6	336	2.0	0.02	7.9	0.0010	0.16	0.02	3.2	0.05	13.0	186	0.48	0.67	28.0
Maximum		97.7	356.0	314.0	0.013	9.05	1975	19.1	902	7.0	0.44	25.2	21.47	0.89	0.17	350.0	0.44	308.0	271	5.18	0.67	146.0
Average		63.0	151.7	215.3	0.004	8.13	935	14.1	547	4.0	0.09	16.3	3.24	0.46	0.06	41.6	0.15	44.2	219	2.58	< 0.05	61.6
											, and the second		·				,		, and the second			

Content Cont		1											ı	1	ı		1			T		1		
CRASTONE CRASTONE	Location	sampling Jate	otes	alcium	Chloride	lardness	henols	Hd blei	ield ?onductivity	/agnesium	SQ	SOD ₅	ımmonia	ield emperature	Inionized mmonia	uo.	/anganese	'urbidity ⁽¹⁾	otal hosphorus	SS	ıkalinity	as	as	sodium
			z	_				Щ					_		·			_						
\$\frac{\$879.93}{\$979.93}\$ \text{\$\frac{\$\text{\$\ 0.955}{\$\ 0.955}}\$ \text{\$\ 0.955}{\$\ 0.955}\$ \text{\$\ 0.955}{\$\ 0.955}\$ \text{\$\ 0.955}{\$\ 0.955}\$ \text{\$\ 0.955}\$ \$\ 0		,																						
\$\frac{98-96}{98-96} \$\frac{910}{98-96} \$\frac{10}{98-96}		May-85		72.0	70	328	6	8.54	925	36	582.6	1.44	<0.005			0.84	0.102	15.6						
\$\sigma\$ \sqrt{8} \sqrt{9} \sq			2									0.8												
SP3-93 New-96												0.04												
SP-948 New SP 196 20 382 410 773 1470 36.6 776 504 0.005 0.8 0.346			2																					
SP9-36 Nug-87 2 760 140 266 ct 0 7.88 1000 24.4 628 4.2 0.015 3.3 0.138 134																		21						
SP9-93 Nov-97			2															134						
SP-948 May-98 D SS 3 91.6 282.6 10 7.45 810 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 8.05 1.0 7.62 18.05 1.0 7.05 18.05 1.0 7.62 1.0 7.62 1.0 7.62 1.0 7.62 1.0 7.62 1.0	SP3-93				157.8	454	<1.0	7.85		42.68	768	0.6	0.041			2.16	0.1							
\$93-93 Aug-88 7 \$25 885 386 1 10 7.52 1988 38.32																								
SP9-38																								
SP9-89 Res-80 R			2																					
\$99-93 May-99 \$1 \$42 \$133 \$332 \$15 \$8.04 \$1.009 \$29.5 \$682 \$1.8 \$0.051 \$0.29 \$0.029 \$1.8 \$											416	2 02	0.172			0.26	0.01	7.5						
SP9-39 May-89 D 84.4 123 333 1.5 8.04 1009 20.6 648 1.68 0.063 0.28 0.026 1.68																								
\$P\$-93 Aug-98 2 84.8 138 386 1 7.75 1068 42.1 748 1.64 0.3 0.018 10.4			D																	1				
SP-9-93 Feb-90 108.0 67.8 389 3.5 7.16 700 29.1 53.0 2.16 7.4 0.2 340	SP3-93		2			385	1		1068		748					0.3								
\$P3-93 May-90 92.4 119 320 <1.0 7.52 7.40 21.6 481 1.48																								
\$P3-93 Aug-90 2 17, 71.6 314 c1.0 7.79 660 23 429																								
\$\frac{8P3-93}{8P3-93}\$ \bigs_{ 99}\$ \bigs_{ 10}\$ \bigs_												1.48												
SPR-93 May-91 2 20.0 183 43 1 6.74 1282 46.8 830 3.2 0.10 3.9 5.9 3.9			_									5 12	0.194											
SPB-93 Aug-91 21 20.0 183 493 1 6.74 1282 48.8 830 3.2 0.103 9.35 0.488 385																								
\$P\$-93 Nov-91 106.0 127			2																					
\$\frac{\text{SP-9-39}}{\text{SP-9-30}} = \frac{\text{Pe-9-12}}{\text{SP-9-30}} = \frac{\text{Pe-9-12}}{\text{SP-9-30}} = \frac{\text{SP-9-12}}{\text{SP-9-30}} = \frac{\text{SP-9-12}}{\text{SP-9-12}} = \frac	SP3-93	Nov-91		123.0	699	538	<1.0	8.00	2180	56	2046	2.4	0.289			2	0.59	77						
SPR-93 Feb-92 97.7 130 327 <1.0 7.58 510 20.1 332+ 0.7 0.025																								
SP3-93 Mgy-92 72.5 133 275 4.0U 8.22 580 22.7 377 200U 0.043U 0.45 0.075 18 SP3-93 Mgy-92 28.8 86.2 339 3.5 8.45 1800 24.1 550 16.0U 0.01 1.26 0.059 483 SP3-93 Mgy-92 84.7 94 300 16.5 7.62 480 20.3 312 3.1 0.045U 8.74 0.233 341 SP3-93 Mgy-93 7.78 98.5 283 18.5 7.62 480 20.3 312 3.3 0.050U 8.84 0.233 341 SP3-93 Mgy-93 70.4 64.6 312 4.10 8.32 450 2.6 514 42.0 0.39 6.88 1.12 33 SP3-93 Mgy-93 2.05 106 61.9 4.10 8.32 450 2.6 514 42.0 0.39 6.88 1.12 33 SP3-93 Mgy-93 2.07																			0.101	38.0				
SP3-93 Aug-92 2 95.8 86.2 339 3.5 8.45 1600 24.1 550 16.0U 0.01 1.26 0.059 463																								
SP3-93 No-92 84.7 94 300 16.5 762 480 21.5 312 4.1 0.045U 8.74 0.233 341			2																					
SP3-93 Nov-92 0 77,8 98,5 283 18,5 762 480 20,3 312 3.3 0.050U 8,43 0.233 266																								
SP3-93 May-93 70.4 64.6 312 <1.0 8.10 570 33.1 540 3 0.37 1.5 0.28 38			D		98.5				480		312					8.43		266						
SP3-93 Apr-94 82.0 65.1 265 <1.0 8.5 700 14.6 444 <2.0 <0.02 0.23 0.05 17. 0.121 9	SP3-93	Feb-93		20.5	106	61.9	<1.0	8.32	450	2.6	514	<2.0	0.39			6.88	1.12	33						
SP3-93 Apr-94 82.0 65.1 265 x1.0 8.5 700 14.6 444 x2.0					64.6	312	<1.0	8.10	570	33.1	540	3	0.37			1.5	0.28	38						
SP3-93 Apr-94 D 79.2 57.1 255 <1.0 8.50 700 14 456 <2.0 <0.02 0.02 0.02 0.03 0.04 17.5 0.146 6.0			2		05.4	005	4.0	0.5	700	440	444		0.00			0.00	0.05	47	0.404					
SP3-93 Sep-94 75.2 87.3 344 <2.0* 8.50 1000 38 686 <2.0 <0.01 0.22 0.08 10.9 <0.10 6.0			D																					
SP3-93 Apr-95 76.9			D																					
SP3-93 Sep-95 83.5 74.2 387 <1.0 8.00 800 533 606 <0.2 0.02 0.12 0.28 9.5 0.01 6.0																								
SP3-93 Apr-96 74.5 118 261 2 8.39 770 18.3 504 <5.0 0.04 0.167 0.017 6.2 <0.001 5.0 SP3-93 Nov-96 91.0 178 395 <1.0				83.5	74.2	387	<1.0		800	533		<0.2	0.02			0.12	0.28	9.5	0.01	6.0				
SP3-93 Nov-96 91.0 178 395 <1.0 8.49 1290 40.7 926 <2.0 0.11 0.38 0.036 12.1 0.07 13.0 SP3-93 Sep-96 D 90.2 177 387 <1.0			2																					
SP3-93 Sep-96 D 90.2 177 387 <1.0 8.49 1290 39.2 941 2.09 0.036 0.36 0.036 13 0.06 8.3 SP3-93 Oct-96 2 1112 8.00 900 41.4 687 5.4 0.015 0.316 0.117 9 0.11 14.0 9 SP3-93 Sep-97 107.0 390 454 <1.0																								
SP3-93 Oct-96 2 112 8.00 900 41.4 687 5.4 0.015 0.316 0.117 9 0.11 14.0 9 SP3-93 Apr-97 1 46.0 228 535 3 8.90 1200 41.4 687 5.4 0.015 0.316 0.117 9 0.11 14.0 9 0.7 19.0																								
SP3-93 Apr-97 146.0 228 535 3 8.90 1200 41.4 687 5.4 0.015 0.316 0.117 9 0.11 14.0 SP3-93 Sep-97 107.0 390 454 <1.0				90.2		367	<1.0			39.2	941	∠.09	0.036			0.36	0.036	13	0.06					
SP3-93 Sep-97 1 07.0 390 454 <1.0 7.90 1800 45.3 1280 <5.0 <0.004 0.447 0.145 13.9 0.07 19.0 SP3-93 Sep-97 D 116.0 390 471 <1.0				146.0		535	3			41 4	687	5.4	0.015			0.316	0.117	9	0.11					
SP3-93 Sep-97 D 116.0 390 471 <1.0 7.90 1800 44 1260 <5.0 <0.004 0.441 0.128 11.8 0.07 37.0 SP3-93 Apr-98 2 102 8.05 495 8.0 8.0 8.0 8.0 8.0 9.0 8.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 9.0																								
SP3-93 Apr-98 2 102 8.05 ⁽¹⁾ 813 8.05 813 8.0																								
SP3-93 Apr-98 D,1 99.4 8.05 495 95	SP3-93		2		102			8.05 ⁽¹⁾	813											8.0				
SP3-93 Sep-98 142.0 291 567 <1.0 8.1 1800 51.7 1150 3.3 0.082U 0.319 0.06 13.6 0.60 U 9.0 SP3-93 Apr-99 101.0 94.7 J 378 <1.0	SP3-93	Apr-98	D,1																					
SP3-93 Apr-99 101.0 94.7 J 378 <1.0 8.53 837 30.5 646 <4.0 0.0005J 0.113 0.03 3.5 0.15 U <1 SP3-93 Apr-99 D 100.0 172 J 376 <1.0																								
SP3-93 Apr-99 D 100.0 172 J 376 <1.0 8.53 837 30.6 760 <4.0 0.028J 0.117 0.03 3.3 0.15 U <1 SP3-93 Jun-99 2 75.7 1.0 1.0 1.0 1.0 SP3-93 Sep-99 87.9 136 376 <1.0																								
SP3-93 Jún-99 2 75.7 1.0 1.0 SP3-93 Sep-99 87.9 136 376 <1.0																								
SP3-93 Sep-99 87.9 136 376 <1.0 7.56 1320 38.1 932 <6.0 0.053U 0.27 0.029 40 0.14 35.0			_	100.0		3/0	×1.0	0.00	031	30.0	700	\4.0	0.0200			0.117	0.03	3.3	0.100					
			Ħ	87.9		376	<1.0	7.56	1320	38.1	932	<6.0	0.053U			0.27	0.029	40	0.14					
SP3-93 Apr-00 108.0 95.3 405 <2.0* 8.36 1010 32.7 656 <6 <0.009 0.091 0.0245 2.3 0.03 2.0	SP3-93	Apr-00		108.0	95.3	405	<2.0*	8.36	1010	32.7	656	<6	<0.009			0.091	0.0245	2.3	0.03	2.0				

											1							1					
Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	SQL	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Ur			mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP3-93	Jun-00	2		29	0.10	0.00	7.77	420		0.10					2 2 4 5	0.010			253.0				
SP3-93	Sep-00		93.0	8610	343	<2.0*	8.08	856	26.8	212	<4	0.027			0.215	0.016	7.9	0.05	15.0				
SP3-93 SP3-93	Apr-01 Jun-01	2	107.0	145 140	357	<2.0*	7.71 7.72	906 980	21.8	672	3.4	<0.05			0.294	0.098	17	<0.10	29.0 10.0				
SP3-93	Sep-01		92.5	296	436	6	7.68	1620	49.9	968	<4.0	<0.05			0.255	0.0878	11	0.09	6.0				
SP3-93	Apr-02		78.4	136	266	<1.0	7.80	920	17	562	<4.0	0.07			0.25	0.038	6.9	<0.01	17.0				
SP3-93	Sep-02		110.0	180	390	<1.0	5.20	933	31	858	<2.0	0.17			0.4	0.075	18.5	0.03	6.5				
SP3-93	Oct-02	2		400			7.80	1980											29.0				
SP3-93	Apr-03		100.0	139	308	1	6.26	980	23	545	<3.0	<0.05			0.34	0.043	5.9	0.2	7.0				
SP3-93	Jun-03	2		146			8.02	1020											20.0				
SP3-93	Sep-03		150.0	462	577	1	8.16 ⁽¹⁾	2150	43	1410	5	<0.05			1.8	0.16	156	0.38	218.0				
SP3-93	May-04		87.7	78.7	286	<2.0*	8.18/8.09 ⁽¹⁾	694/774 ⁽¹⁾	16.3	522	<5	0.13		0.0072 / 0.0059	0.486	0.056	2.3J	0.1	13.0				
SP3-93	Sep-04		111.0	498	448	<2.0*	8.39	2480	41.2	1490	<5	<0.02	18.2	<0.00157	0.539 U	0.105U	3.8J	0.15	13.0				
SP3-93	Apr-05		76.8	84.9	247	<2.0*	7.89	704	13.5	770	<5	0.04		0.00044	0.691	0.05	1.6	0.05	<12				
SP3-93 SP3-93	Jul-05	2	90.2	115 137	297	-1.0	8.29 7.50	753	17.0	480	-E	0.06		0.00017	0.649	0.03	5.2	0.07	<12 <12				
SP3-93	Nov-05 Apr-06		89.2 70.0	90	230	<1.0 <1.0	9.36	818 712	17.9 13	450	<5 <2	0.06 <0.05		<0.0173	0.649	0.03	6.6	0.07 0.025 U	6.0				
SP3-93	Jul-06	2	70.0	42	230	<1.0	7.71	442	13	430	\Z	V 0.03		Z0.0173	0.0	0.04	0.0	0.023 0	42.0				
SP3-93	Nov-06	_	107.0	65	350	<1.0	7.63	311	21	450	<2	<0.05		< 0.00024	0.84	0.09	22	0.22	110.0				
SP3-93	Apr-07		72.7	115	240	<1.0			14.5	460	<2	<0.05			0.27	0.033	2.7	0.07	7.0				
SP3-93	Nov-07		101.0	236	350	2JU	8.10	1430	23.8	850	<2	0.12		0.00128	0.96 J	0.163	13.5	0.081	26.0				
SP3-93	Nov-07	D	98.8	239	350	4JU	8.10	1430	24	850	<2	0.12		0.00128	0.97 J	0.164	13.4	0.087	27.0				
SP3-93	Apr-08		69.9	72	220	<1.0	8.26	630	11.3	380	<2	<0.05	9.5	< 0.00157	0.52	0.04	9.2	0.091	23.0				
SP3-93	Aug-08	2		158			7.61	732					16.6		1.71			0.11	37.0				
SP3-93	Nov-08		85.3	68	270	<1.0	7.18	647	14.5	380	<2	0.11	2.7	0.00017	0.42	0.018	5.8	0.051	7.0				
SP3-93 SP3-93	Nov-08 Apr-09	D	84.1 66.7	68 73.9	270 210	<1.0 <1.0	7.18 8.28	647 566	14.6 10.5	400 386	<2 3.5	0.07 0.075	19.3	0.00011 0.005017	0.4 0.786	0.017 0.0303	6.3 19.5	0.052 0.102	5.0 17.6				
SP3-93	Nov-09		96.1	147	318	2	7.88	1080	18.9	616	<2.0	<0.050	5.8	< 0.003017	0.604	0.0303	6.5	0.0174	4.0				
SP3-93	Nov-09	D	97.6	154	325	2	7.88	1080	19.8	642	<2.0	<0.050	0.0	< 0.000499	0.635	0.0731	6.3	0.0215	4.4				
SP3-93	Mar-10	ĒΤ	83.7	99	260	<1.0	8.45	960	12.3	442	<2.0	<0.050	5.2		0.198	0.0290	3.2	0.0416	5.2				
SP3-93	Mar-10	D	84.1	97.4	262	<1.0	8.45	960	12.7	450	<2.0	<0.050	5.2		0.216	0.0296	2.8	0.0327	4.4				
SP3-93	May-10			108			8.38								<0.050			0.0434	5.6				
SP3-93	Nov-10		68.3	84.4	229	<1.0	6.89	512	14.2	442	3.9	0.052	8.6		3.08	0.071	67	0.3080	41.3				
SP3-93	Mar-11		70.6	11.2	238	1.4	8.48	879	15.1	482	<2.0	<0.050	4.7	< 0.0017	0.181	0.0276	3.9	0.0232	4.4				
SP3-93	Oct-11		77.4	48.1	0.40	4.0	8.21	670	44.0	000	0.0	0.004	10.8		0.543	0.0000	07	0.0834	19.6				
SP3-93 SP3-93	Dec-11		77.1	39.6	242	<1.0	7.78	748	11.9	360	<2.0	0.061	4.6	0.00036	0.996	0.0228	27 148	0.0774	13.6				
SP3-93 SP3-93	Apr-12 Aug-12		56.4	41.9 302	223	<1.0	7.63 8.38	1630 1620	20.0	924	<2.0	0.052	8.5 23	0.00036	0.669 0.297	0.162	31.7	0.0544	26.8 8.4				
SP3-93	Nov-12	\vdash	94.9	160	310	<1.0	6.99	853	17.7	686	<2.0	<0.050	4.3	<0.00006	0.278	0.0546	46	0.0143	4.0				
SP3-93	May-13	H	59.2	94.4	200	<0.001	8.55	653	12.6	366	<5	0.02	19.3	2.36	0.12	0.034	8.7	0.04	<10				
SP3-93	May-13	D	58.2	92.2	196	<0.001			12.4	374	<5	0.02			0.14	0.028	8.3	0.04	<10				
SP3-93	Oct-13		73.4	44.6	229	0.004	8.05	604	11.0	374	<5	0.07	8.0	1.22	0.23	0.023	14.4	0.10	19				
SP3-93	Oct-13	D	73.1	44.4	227	<0.001			10.9	378	<5	0.07			0.20	0.022	15.1	0.11	20				
SP3-93	Jun-14		43.2	185	156	<0.001	7.24	1014	11.7	572	<5	0.29	21.6	2.23	0.55	0.079	12.8	0.24	13				
SP3-93 SP3-93	Nov-14	\vdash	98.8	78.2	318	<0.001	7.55	772	17.4	468	<5 -F	<0.02	8.1	0.11	0.36	0.068	23.5	<0.02	18 20				
SP3-93 SP3-93	May-15 May-15	D	62.7 61.1	319 318	226 219	<0.001	8.18	1663	16.8 16.1	888 840	<5 5.00	0.42	26.0	35.44	0.69 0.72	0.129 0.134	21.4	0.34	<10				
SP3-93	Sep-15	U	Dry	310	213	~0.001			10.1	040	3.00	0.42			0.72	0.104	44.1	0.52	×10				
SP3-93	Apr-16	H	66.8	111	228	<0.001	8.41	685	14.8	406	<5	0.03	10.69	1.44	0.22	0.052	9.8	0.07	12				
SP3-93	Apr-16	D	66.2	112	226	<0.001		- 50	14.7	412	<5	0.04	12.00		0.23	0.051	10.1	<0.02	12				
SP3-93	Oct-16	П	58.6	199	187	<0.001	7.93	1027	9.81	652	<5	0.05	15.93	1.22	0.52	0.057	18.2	0.10	<10				
SP3-93	Apr-17		66.3	75	215	<0.001	8.33	668	12.0	380	<5	0.02	16.04	1.19	0.20	0.034	10.4	0.07	<10				
SP3-93	Apr-17	D	66.8	75.5	216	<0.001			12.0	380	<5	<0.02			0.20	0.035	11.9	0.06	<10				
SP3-93	Sep-17		36.4	335	144	<0.001	8.08	1504	12.9	830	<5	0.04	20.4	1.87	0.67	0.074	26.5	0.33	22				
SP3-93	May-18	\sqcup	49.9	154	290	<0.001	8.74	797	14.6	508	<5	0.06	15.14		0.36	0.064	12.0	0.09	15				
SP3-93	Oct-18		92.7	84.4	295	<0.001	8.22	390.1	15.5	500	<5	< 0.02	13.9		<0.010	0.013	14.7	<0.02	11				

Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Ur	its ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP3-93	May-19		60.4	56.7	194	<0.001	7.88	586	10.6	354	<5	0.12	22.43	0.004	<0.010	< 0.002	16.1	0.09	18	225	3.16	< 0.05	27.8
SP3-93	Oct-19		66.1	76.2	214	0.005	7.77	545	11.8	410	<5	< 0.02	NA	NA	0.483	0.055	48.6	0.21	26	178	1.37	< 0.10	36.7
SP3-93	May-20		88.5	82.3	287	<0.001	7.89	835	16.06	490	<5	< 0.02	18.2	< 0.001	0.401	0.047	21.2	0.07	<10	235	5.47	< 0.25	42.2
SP3-93	Oct-20		56.8	186	204	0.002	7.98	763	15.13	606	3	< 0.02	10.6	< 0.001	0.992	0.094	10.7	0.05	<10	196	<0.25	< 0.25	74.94
SP3-93	Jun-21		42.4	349	190	< 0.001	7.61	1932	20.50	908	<2	0.02	23.2	0.02	0.922	0.171	6.9	0.14	11	211	< 0.07	< 0.05	145
SP3-93	Nov-21		95.9	49.1	307	0.014	8.15		16.30	386	<2	<0.02	11	< 0.001	0.159	0.02	3.9	0.07	<10	270	2.83	< 0.05	30.6
SP3-93	May-22		46.2	180	180	0.009	7.29	992	15.70	612	<2	0.11	17.2	0.006	0.523	0.092	3.7	0.10	<10	256	0.46	0.77	74.7
SP3-93	Oct-22		30.5	339	135	0.001	8.15	961	14.20	940	<2	<0.02	16.4	0.041	1.69	0.153	18.8	0.12	31	212	0.46	< 0.05	115
Minimum			20.5	11.2	61.9	0.001	5.20	311	2.6	212	0.6	0.01	2.7	0.0001	0.02	0.01	1.6	0.01	1.0	178	0.46	0.77	27.8
Maximum			421.0	8610.0	1390.0	18.500	9.36	2480	533.0	2046	5.4	0.42	26.0	35.44	68.20	1.49	463.0	0.60	253.0	270	5.47	0.77	145.0
Average			87.2	217.6	317.2	2.811	7.92	980	28.8	641	2.8	0.10	13.6	2.25	1.79	0.11	43.5	0.12	27.0	223	2.29	0.77	68.4

					T						ı								ı			1	
Location	Sampling Date	lotes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	IDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	ū	Manganese	Furbidity ⁽¹⁾	Total Phosphorus	SS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1		Z	mg/L	mg/L	mg/L	μg/L	ш.	μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un			mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP1B-94	Apr-94		62.7	42.6	216	<1.0	8.20	500	14.4	354	<2.0	<0.02			0.72	0.06	76	0.111	26	, i			
SP1B-94	Sep-94		61.3	98	235	<2.0*	8.70	900	19.8	530	3	<0.01			0.14	0.05	6.4	<0.10	12				
SP1B-94	Apr-95		71.8				8.00	500	12.8	384	6.0	0.02			0.24	0.05	102	0.18	27				
SP1B-94	Sep-95		81.8	101	275	<1.0	7.70	700	17.3	453	4.0	0.97			0.38	0.31	24	0.08	15				
SP1B-94	Oct-95	2		72.8			7.94 ⁽¹⁾												27				
SP1B-94	Apr-96		58.3	28.4	192	<1.0	8.05	374	11.4	268	<5.0	0.03			0.219	<0.015	13	<0.01	4				
SP1B-94	Sep-96		69.4	54.6	235	<1.0	8.34	600	14.9	465	5.21	0.038			0.2	0.034	2.5	0.02	4.1				
SP1B-94	Oct-96	2		53			7.40 ⁽¹⁾	-											78				
SP1B-94	Apr-97		143	94.8	510	30	8.00	1000	37.2	670	185	11.0			1.26	1.11	20	0.52	35				
SP1B-94	May-97		126	84.2	449	20	8.00	900	32.6	550	19.6J	0.214			2.08	0.144	52	0.32	50				
SP1B-94	Sep-97	\sqcup	131.0	64.7	479	<1.0	7.40	900	36.9	628	21.0	<0.004			1.45	0.621	34	0.06	4				
SP1B-94	Apr-98	2		45.4			7.88 ⁽¹⁾	495											11				
SP1B-94	Apr-98		52.8	106	192	<1.0	8.13	490	14.7	334	<4.0UJ	0.046U			0.257	0.018	6.8	0.04	4 U				
SP1B-94	Sep-98		123	138	430	<1.0	7.31	1010	29.8	633	4.5	0.065U			0.182	0.097	4.1	0.13 U	<1.0				
SP1B-94	Apr-99		79.7	51.4 130	273	<1.0	7.94	532	17.9	384	2.2	0.005			0.186	0.03	6.7	0.08 U	<1.0 13	-			
SP1B-94 SP1B-94	Jun-99 Jun-99	2 D		130															13				
SP1B-94	Sep-99	D	61.9	67	236	<1.0	7.75	678	19.7	488	<6.0	0.115U			0.143	0.018	12	0.09 U	10				
SP1B-94	Apr-00		89.7	46.6	330	<2.0*	8.10	673	25.8	468	<4	<0.009			0.143	0.0143	3.5	0.09 0	<1				
SP1B-94	Jun-00	2	03.7	26.4	330	\2.0	7.51	443	25.0	700		V0.003			0.110	0.0140	0.0	0.1	14				
SP1B-94	Sep-00	-	49.4	20.2	174	<2.0*	7.81	396	12.4	284	4.3	0.144			0.234 J	0.031	11	0.01	13 J				
SP1B-94	Sep-00	D	44.1	20.2	160	<2.0*	7.81	396	12	264	<4	0.146			0.326 J	0.029	13	0.02	13 J				
SP1B-94	Apr-01		83.3	49.4	289	<2.0*	7.67	679	19.6	528	2.8	<0.05			0.292	0.028	10	<0.10	5				
SP1B-94	Jun-01	2		60.5			7.73	781											<2				
SP1B-94	Jun-01	D		57.2			7.73	781											4				
SP1B-94	Sep-01		Dry																				
SP1B-94	Apr-02		75.5	56.7	285	<1.0	7.47	662	23.5	419	<4.0	0.12			0.17	0.017	3.4	<0.01	4				
SP1B-94	Sep-02		Dry	88			7.50	4000											38				
SP1B-94 SP1B-94	Oct-02 Apr-03	2	83	42.5	266	1	7.59 8.31	1600 600	25	355	<3.0	<0.05			0.37	0.031	10.1	<0.02	5				
SP1B-94	Jun-03	2	03	39	200		8.01	634	2.5	333	₹3.0	V0.03			0.57	0.031	10.1	<0.02	<1.0				
SP1B-94	Sep-03		Dry	- 00			0.01	001											11.0				
SP1B-94	May-04		70.2	70.2	274	16	8.21/7.52 ⁽¹⁾	698/784 ⁽¹⁾	23.9	514	24	2.22	22	0.154/0.033	0.401	0.127	3.8J	0.25	27				
SP1B-94	Sep-04		Dry	7 0.2			0.2.77102	000/101	20.0	011				0.10 1/0.000	0	0	0.00	0.20					
SP1B-94	Apr-05		25.6	230	92	<2*	8.34	766	6.81	874	<5	0.05		0.00165	0.885	0.078	4.4	< 0.05	<12				
SP1B-94	Jul-05	2		108			8.14	680											<12				
SP1B-94	Nov-05		71.2	98.8	242	<1.0	8.02	649	15.5	418	<5	0.09		0.00086	1.2	0.125	12	0.05	25				
SP1B-94	Apr-06		107	107	400	<1	8.87	1090	32	710	<2	<0.05		< 0.00609	1.1	0.1	65	0.12	120				
SP1B-94	Jul-06	2		90			7.50	785											30				
SP1B-94	Nov-06	\vdash	130	94	490	<1	7.47	1080	41	740	<2	<0.05		< 0.00016	0.31	0.1	4.4	0.044 U	6				
SP1B-94	Apr-07	\vdash	102	125	380	2	7.87	1070	30.5	710	7	0.57		0.0053	1.03	0.131	3.8	0.120	13				
SP1B-94	Nov-07	\vdash	142	184 144	510	3	7.95 7.44	1350	37.4	800	2	0.06 4	0.6	0.00048	0.56 J	0.119	8.1 37	0.210	68				
SP1B-94 SP1B-94	Apr-08 Aug-08	2	98	144	350	23	7.44	1060 763	25	660	48	4	9.6 18	0.01973	4.1 4.8	0.74	31	0.840 0.180	45 120	-			
SP1B-94 SP1B-94	Aug-08	D		140			7.96	763					18		4.6			0.180	120				
SP1B-94	Nov-08	-	194	182	620	21	7.10	1100	33	790	90	0.71	0.6	0.00077	15.8	1.02	143	0.100	250	†			
SP1B-94	Apr-09		96.4	158	341	<1.0	7.80	1120	24.3	764	11.3	0.274	18.9	0.00617	2.3	0.761	43	0.5440	26.4				
SP1B-94	Nov-09	\Box	Dry				1.00						. 5.0		1		-						
SP1B-94	Mar-10		146	195	498	6	7.94	1630	32.5	838	37	0.319	4.1	0.003185568	15.5	1.400	26	0.5740	66				
SP1B-94	May-10			143			8.17								0.537			0.0796	12.4				
SP1B-94	Nov-10		160	164	527	<1.0	6.71	1340	31.1	956	3.7	0.389	7.9		0.618	0.151	16.5	0.0907	18.4				
SP1B-94	Mar-11		108	168	370	2	7.95	1250	24.2	738	20.5	0.052	4.8	0.00056	4.67	1.120	27	0.098	20				
SP1B-94	Oct-11			96			8.07	1010					9.8		0.48			0.0562	5.6				
SP1B-94	Dec-11		104	70.1	384	<1.0	8.32	851	30.3	566	<2.0	<0.050	3.4		0.742	0.111	25	0.049	11.6				
SP1B-94	Apr-12		145	11.8	524	<1.0	7.83	1410	39.1	866	<2.0	0.051	7.2	< 0.00051	0.512	0.162	57	0.291	40.5	<u> </u>			

Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un	its ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP1B-94	Aug-12			231			8.29	1540					24		0.08		51		8				
SP1B-94	Aug-12	D		230			8.29	1540					24		0.123		51		8				
SP1B-94	Nov-12		171	189	585	<5.0	7.35	1410	38.5	1040	2.4	0.137	5.9	< 0.00041	0.237	0.121	80	0.0225	21.2				
SP1B-94	May-13		86.7	141	317	<0.001	7.78	1021	24.5	518	<5	0.02	18.2	0.41	0.45	0.101	19.5	0.07	16				
SP1B-94	Oct-13		165	226	569	0.002	7.78	1550	38.2	922	<5	< 0.02	5.7	0.16	0.44	0.758	9.8	0.12	<10				
SP1B-94	Jun-14		Dry																				
SP1B-94	Nov-14		230	505	778	<0.001	6.24	1770	49.5	1430	<5	<0.02	6.1	0.005	0.18	0.266	4.4	<0.02	<10				
SP1B-94	May-15		Ins																				
SP1B-94	Sep-15		Dry																				1
SP1B-94	Apr-16		137	247	474	<0.001	7.99	989	32.1	812	<5	0.08	5.2	0.98	0.19	0.071	5.8	0.05	<10				1
SP1B-94	Oct-16		Dry																				1
SP1B-94	Apr-17		124	194	437	<0.001	7.90	1044	31.0	726	<5	<0.02	9.76	0.29	0.14	0.072	14.2	0.06	<10				
SP1B-94	Sep-17		Dry																				
SP1B-94	May-18		73.0	237	290	0.001	8.87	829	26.1	738	<5	< 0.07	16.7		0.768	0.100	19.6	0.09	18				
SP1B-94	Oct-18		86.4	180	337	0.003	7.85	944	29.5	704	<5	< 0.04	11.5		<0.010	0.002	7.5	0.04	<10				
SP1B-94	May-19		99.4	165	343	<0.001	7.65	1059	23.0	620	<5	0.04	21.93	0.001	<0.010	0.056	7.3	0.06	<10	358	0.59	<0.25	77.9
SP1B-94	Oct-19		154	187	522	0.002	7.74	1145	33.4	986	<5	< 0.02	NA	NA	<0.010	0.015	3.3	0.07	<10	302	<0.25	<0.25	102
SP1B-94	May-20		130.6	177	457	0.001	7.87	1402	31.9	812	<5	< 0.02	16.3	< 0.001	0.219	0.044	3.6	0.06	11	364	<0.25	< 0.25	101
SP1B-94	Oct-20		110.6	139	382	0.004	7.89	681	25.64	670	<2	<0.02	9	<0.001	0.989	0.058	20.5	0.05	15	250	<0.25	<0.25	73.6
SP1B-94	Jun-21		Dry																				
SP1B-94	Nov-21		131	45.6	426	0.025	7.58		24.00	492	4	1.33	6.01	0.007	2.84	0.277	14.9	0.23	30	328	1.68	< 0.05	32.6
SP1B-94	May-22		143	241	596	0.008	7.56	1616	57.90	1050	44	10.50	18	0.012249822	8.62	0.532	67.9	0.39	158	557	<0.07	1.35	146
SP1B-94	Oct-22		Dry																				
														· ·									
Minimum			25.6	11.8	92.0	0.001	6.24	374	6.8	264	2.0	0.01	0.6	0.0005	0.08	0.00	2.5	0.01	4.0	250	0.59	1.35	32.6
Maximum			230.0	505.0	778.0	30.000	8.87	1770	57.9	1430	185.0	10.50	24.0	0.98	15.80	1.40	143.0	0.93	250.0	557	1.68	1.35	146.0
Average			105.5	122.1	377.5	6.529	7.86	941	26.9	644	26.4	0.71	11.9	0.11	1.65	0.24	25.8	0.17	33.4	360	1.14	1.35	88.9

			1																		1		
Location	Sampling Date	Votes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	IDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	ū	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	SS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (_	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un			mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP2B-94	Apr-94		61.9	39.7	214	<1.0	8.10	500	14.4	326	<2.0	<0.02	_	F5-	0.6	0.04	63	0.102	10				
SP2B-94	Sep-94		Dry													0.0.							
SP2B-94	Apr-95		70.1				7.80	500	12.5	394	4	0.04			0.22	0.04	98	0.01	19				
SP2B-94	Apr-95	D	71.8				7.80	500	12.7	362	7	0.05			0.16	0.04	97	0.31	23				
SP2B-94	Sep-95		Dry														•						
SP2B-94	Oct-95	2		714			7.96 ⁽¹⁾												48				
SP2B-94	Apr-96		59.1	33.5	196	<1.0	8.01	409	11.9	281	<5.0	0.06			0.299	0.019	18.1	<0.01	10				
SP2B-94	Sep-96		Dry	00.0	100	V1.0	0.01	100	11.0	201	10.0	0.00			0.200	0.010	10.1	40.01	- 10				
SP2B-94	Oct-96	2	2.,	47.3			7.9 ⁽¹⁾	600											11				
SP2B-94	Apr-97		150	96.3	534	44	8	1000	38.7	683	225	5.5			1.27	1.18	18	0.12	36				
SP2B-94	May-97		86.2	85.7	343	8	8	700	31	550	10.7J	0.567			0.17	0.124	46	0.25	48				
SP2B-94	Sep-97		105	54.1	356	<1.0	7.5	700	22.7	473	20	<0.004			0.508	0.08	11.3	0.06	24				
SP2B-94	Apr-98	2	. 50	46.7	550	-1.0	7.94 ⁽¹⁾	510	,		0	-0.00-r			0.000	0.00	. 1.0	0.00	6				
SP2B-94	Apr-98	-	48.4	49.4	177	<1.0	9.13	498	13.7	322	<4.0UJ	0.073U			0.269	0.028	8.5	0.05	8				
SP2B-94	Sep-98		109	128	397	<1.0	7.76	1010	30.4	838	9.9	0.178			1.38	0.255	>200	0.44 U	523				
SP2B-94	Apr-99		91	49.2	306	<1.0	7.70	561	19.2	402	<6.0	0.178			0.523	0.233	12.1	0.44 0	18	 			
SP2B-94	Jun-99	2	01	71.9	000	V1.0	7.07	001	10.2	102	10.0	0.010			0.020	0.001	12.1	0.11	7				
SP2B-94	Sep-99		53.8	62.7	217	<1.0	8.01	1010	20.1	396	<6.0	0.058U			0.203	0.051	6	0.05 U*	<1				
SP2B-94	Sep-99	D	52.3	59.6	209	<1.0	8.01	1010	18.9	443	<6.0	0.055U			0.18	0.044	7	0.05 U*	1				
SP2B-94	Apr-00		93.6	44	345	<2.0*	8.12	689	26.9	440	<6	0.06			0.296	0.0359	9.8	0.04	<1				
SP2B-94	Jun-00	2	00.0	28	0.0	12.0	7.55	447	20.0		- 10	0.00			0.200	0.0000	0.0	0.0.	24				
SP2B-94	Sep-00		50.2	20.3	176	<2.0*	7.84	395	12.4	67	4.2	0.031			0.224	0.044	14	0.02	14				
SP2B-94	Apr-01		77.8	43.9	275	<2.0*	7.34	557	19.5	512	<4.0	0.06			0.231	0.018	7.8	<0.10*	5				
SP2B-94	Jun-01	2		52.5			8.04	560											10				
SP2B-94	Sep-01		70.2	105	301	<1.0	7.85	789	30.6	482	<4.0	0.07			0.836	0.212	31	0.06	34				
SP2B-94	Sep-01	D	63.7	100	286	<1.0	7.85	789	30.8	504	5.8	< 0.05			0.577	0.103	47	0.07	35				
SP2B-94	Apr-02		71.6	55.4	270	<1.0	7.48	662	22.1	419	<4.0	0.07			0.18	0.018	3.7	0.01	6				
SP2B-94	Sep-02		160	45	494	<1.0	6.80	722	23	798	2.6	<0.05			0.44	0.055	12.2	<0.01	8				
SP2B-94	Sep-02	D	160	45	494	<1.0	6.80	722	23	776	2.6	<0.05			0.43	0.056	27	<0.01	10.5				
SP2B-94	Oct-02	2		53			7.75	1110											3.7				
SP2B-94	Apr-03		82	41.6	264	1	8.31	599	23	393	<3.0	<0.05			0.31	0.024	11.6	<0.02	15				
SP2B-94	Jun-03	2		39			8.51	447											5				
SP2B-94	Sep-03		61	66	266	1	8.05 ⁽¹⁾	494	22	407	<5.0	0.16			1	0.33	20.7	0.15	20				
SP2B-94	May-04		79.3	73.2	302	28	7.84/7.25 ⁽¹⁾	763/858 ⁽¹⁾	25.2	556	51	3.25	19.2	0.082/0.021	0.619	0.219	7.5J	0.48	47				
SP2B-94	Sep-04		No Flow																				
SP2B-94	Apr-05		70.3	101	253	<2	8.34	766	18.8	548	<5	1.05		0.03948	0.883	0.065	117	0.1	36				
SP2B-94	Jul-05	2		108			8.30	655		-									<12				
SP2B-94	Nov-05		72.7	99.8	245	3	7.57	652	15.9	400	<5	0.05		0.00017	1.53	0.194	13	0.07	33				
SP2B-94	Apr-06		92	80	330	<1.0	8.68	815	23	560	6	0.07		0.00668	2.7	0.29	73	0.22	50				
SP2B-94	Jul-06	2		37			7.63	355						-					220				
SP2B-94	Nov-06		102	62	370	1	7.57	817	28	550	<2	0.05		0.00023	0.7	0.064	31	0.086	10				
SP2B-94	Apr-07		99.6	112	360	<1	8.05	762	26.7	670	12	1.1		0.01737	1.42	0.291	18	0.31	47				
SP2B-94	Nov-07		106	157	390	6	7.95	1120	30.4	670	16	0.06		0.0005	0.74J	0.188	21	0.15	26				
SP2B-94	Apr-08		77.9	59	260	1	8.00	625	16.1	400	9	0.89	11.5	0.0182	1.89	0.35	25	0.19	48				
SP2B-94	Aug-08	2		168			7.96	307					18.3	·	1.12			0.039	14				
SP2B-94	Nov-08		97.1	127	330	21	7.15	979	22.1	650	52	0.38	1.3	0.00049	1.57	0.506	27	0.35	36				
SP2B-94	Apr-09		69	77.8	236	<1.0	8.29	605	15.6	442	9.1	0.107	22.4	0.009007	2.23	0.173	73	0.217	55.2				
SP2B-94	Nov-09		90	104	324	1	7.80	999	24.1	608	6.5	<0.050	7.6	< 0.00048	1.07	0.102	15.8	0.122	77.2				
SP2B-94	Mar-10		105	122	347	<1.0	8.23	1200	20.7	646	17.8	0.072	6.4		3.3	0.482	33	0.610	63.3				
SP2B-94	May-10	Щ		126			8.28								0.579	L		0.048	18.8				
SP2B-94	Nov-10	\sqcup	97.5	93.2	337	<1.0	7.34	657	22.8	568	<2.0	<0.050	8.9		1.18	0.046	34	0.052	15.2				
SP2B-94	Mar-11	\sqcup	83.2	126	290	2.7	8.08	988	20.1	550	11	<0.050	4.3	< 0.0007	2.12	0.365	20	0.082	24				
SP2B-94	Oct-11			52.4	25.		8.13	757	4.5.	45-			10.9		0.524			0.0714	8.8				
SP2B-94	Dec-11		81.9	36.9	286	<1.0	8.23	642	19.8	420	<2.0	0.118	4.1		1.24	0.0864	50	0.0885	15.2				
SP2B-94	Apr-12		83.4	164	335	<1.0	7.74	1140	30.9	654	3.3	0.058	7.5	< 0.00058	1.28	0.548	36	0.0611	60.8				

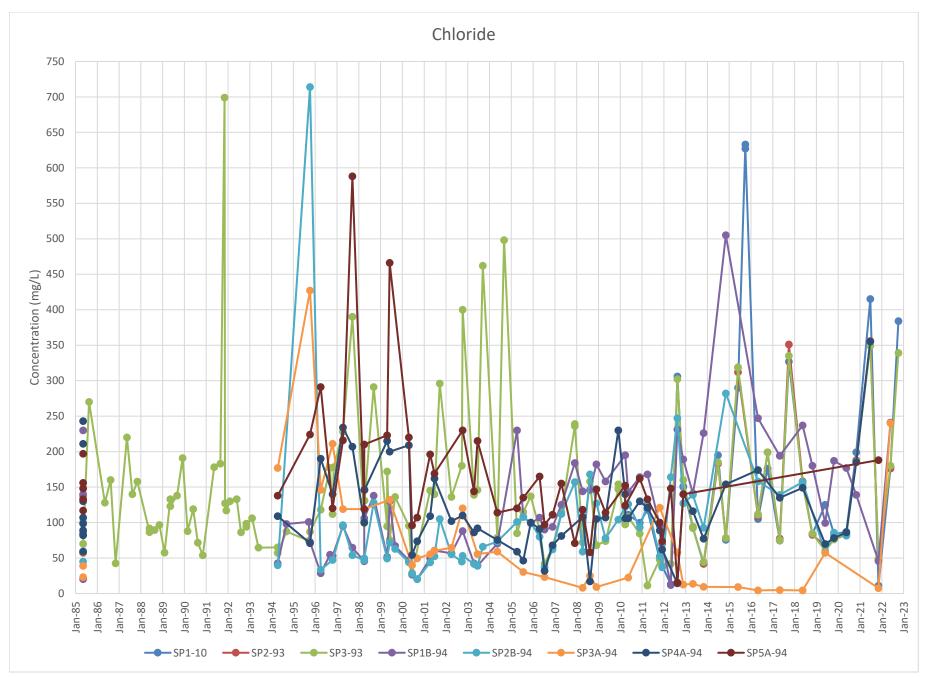
Location	Sampling Date	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	lron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	ISS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un	its ('13 - '14)	mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP2B-94	Aug-12		247			8.29	1360					25.7		0.553		50		21.2				
SP2B-94	Nov-12	132	127	461	<1.0	7.21	888	32.0	762	<2.0	<0.050	6.3	0.00521	1.5	0.137	49	0.0489	27.2				
SP2B-94	May-13	87.8	139	321	<0.001	7.94	945	24.7	532	<5	0.02	18.2	0.59	0.45	0.088	17.1	0.07	23				
SP2B-94	Oct-13	89.9	92.6	303	0.003	7.60	843	19.0	530	<5	<0.02	7.0	0.12	0.36	0.294	27.2	0.09	19				
SP2B-94	Jun-14	Dry																				
SP2B-94	Nov-14	129	282	451	<0.001	7.93	1357	31.3	834	<5	<0.02	8.5	0.28	0.76	0.268	27.3	<0.02	60				
SP2B-94	May-15	Dry																				
SP2B-94	Sep-15	Ins																				
SP2B-94	Apr-16	55.0	158	226	<0.001	8.37	672	21.5	430	<5	0.02	10.4	0.86	0.25	0.042	14.1	<0.02	<10				
SP2B-94	Oct-16	Dry																				
SP2B-94	Apr-17	59.2	139	231	<0.001	8.11	767	20.3	460	<5	< 0.02	13.94	0.63	0.68	0.053	34.1	0.07	20				
SP2B-94	Sep-17	Dry																				
SP2B-94	May-18	44.9	157	171	<0.001	8.87	829	14.3	522	<5	0.08	16.7	0.19	0.205	0.061	13.7	0.06	14				
SP2B-94	Oct-18	86.7	176	337	0.003	7.82	746	29.3	704	9	0.05	11	0.66	<0.010	0.002	45.3	0.31	201				
SP2B-94	May-19	57.4	54.3	201	0.003	7.72	625	13.9	328	<5	<0.02	25.96	< 0.001	<0.010	<0.002	6.8	0.04	<10	210	< 0.05	< 0.05	38.1
SP2B-94	Oct-19	74.3	85.8	238	0.003	8.18	593	12.8	442	<5	<0.02	NA	NA	0.332	0.039	26.9	0.15	12	208	1.42	<0.25	40.4
SP2B-94	May-20	88.5	81.5	287	<0.001	8.07	825	16.01	468	<5	<0.02	19.7	<0.001	0.144	0.03	2.6	0.04	<10	220	5.43	<0.25	43.5
SP2B-94	Oct-20	Dry																				
SP2B-94	Jun-21	Dry																				
SP2B-94	Nov-21	Dry																				
SP2B-94	May-22	Dry																				
SP2B-94	Oct-22	Dry																				
Minimum		44.9	20.3	171.0	0.0	6.8	307.0	11.9	67.0	2.6	0.0	1.3	0.0	0.1	0.0	2.6	0.0	1.0	208.0	1.4	0.0	38.1
Maximum		160.0	714.0	534.0	44.0	9.1	1360.0	38.7	838.0	225.0	5.5	26.0	0.9	3.3	1.2	117.0	0.6	523.0	220.0	5.4	0.0	43.5
Average		84.9	100.0	305.1	6.9	7.9	742.1	21.9	513.7	23.0	0.4	12.4	0.2	0.8	0.2	30.6	0.1	40.1	212.7	3.4	<0.25	40.7

							ı	I I							1			ı	ı				
Landina	Sampling Date	Votes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	ron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	SS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
Location	<u> </u>	ž	mg/L	mg/L	mg/L	<u>α</u> μg/L	Ш	μS/cm	≥ mg/L	mg/L	mg/L	≪ mg/L	°C	⊃ <u><</u> mg/L	mg/L	_≥ mg/L	⊢ NTU	r ⊆ mg/L	⊢ mg/L	Mg/L	mg/L	mg/L	mg/L
	nits ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP3A-94	Apr-94		103	177	414	<1.0	8.00	1300	38	868	<2.0	<0.02	_	F9-	0.5	0.06	39	0.108	27				
SP3A-94	Sep-94		Dry																				
SP3A-94	Apr-95		118				7.80	1000	38.5	744	2	0.04			0.22	0.06	41	<0.01	6				
SP3A-94	Sep-95		Dry																				
SP3A-94	Oct-95	2		427			8.01 ⁽¹⁾												7				
SP3A-94	Apr-96		94.2	146	408	<1.0	7.66	1350	42	838	<5.0	0.01			0.282	0.036	1.8	<0.01	3				
SP3A-94	Sep-96		Dry				(4)																
SP3A-94	Oct-96	2		211			8.00 ⁽¹⁾												15				
SP3A-94	Apr-97		164	119	691	7	8.20	900	68.4	613	3.9	0.691			3.52	0.144	85	0.09	123				——
SP3A-94	Sep-97		Dry				7 44(1)	4400															
SP3A-94 SP3A-94	Apr-98	2	Dry	119			7.41 ⁽¹⁾	1100											11	-			
SP3A-94 SP3A-94	Apr-98 Sep-98		Dry																				
SP3A-94	Apr-99		Dry																				
SP3A-94	Jun-99	2		132															18				
SP3A-94	Sep-99		Dry																				
SP3A-94	Apr-00		Dry																				
SP3A-94	Jun-00	2		39.7			7.74	871											8 J				
SP3A-94	Jun-00			38.8			7.74	871											4 J				
SP3A-94	Sep-00		62.3	49.5	227	<2.0*	7.92	606	17.3	104	5.7	0.036			0.217	0.026	3.7	0.05	9				
SP3A-94	Apr-01		148	55.3	580	<2.0*	7.36	784	51	880	<4.0	<0.05			0.253	0.283	5.4	<0.10*	9				
SP3A-94 SP3A-94	Jun-01	2	Dry	60.3			7.95	910											11				
SP3A-94	Sep-01 Apr-02		96.8	64.3	382	<1.0	7.14	845	34.1	578	<4.0	0.05			0.16	0.014	5.5	<0.01	5				
SP3A-94	Sep-02		Dry	04.5	302	<1.0	7.14	043	34.1	370	\4.0	0.03			0.10	0.014	3.3	V0.01	,				
SP3A-94	Oct-02	2	Diy	120			7.30	1640											220				
SP3A-94	Apr-03		Dry																				
SP3A-94	Jun-03	2		55.5			7.31	1050											9				
SP3A-94	Jun-03			56.9			7.31	1050											17				
SP3A-94	Sep-03		Dry				40	(4)															
SP3A-94	May-04		92.7	58.9	353	3	8.06/7.78 ⁽¹⁾	697/836 ⁽¹⁾	29.5	532	<5	0.06	20.7	0.003/0.001	0.526	0.183	2.9J	0.04 U	<12				
SP3A-94	Sep-04		Dry																				
SP3A-94	Apr-05		Too dee	p; no flow	/		7.04	0.40											40				
SP3A-94 SP3A-94	Jul-05 Nov-05	2	Dry	30.3			7.64	643											<12				
SP3A-94	Apr-06		,	p; no flow	,																		
SP3A-94	Jul-06	2	100 000	23	,		7.72	346											16 J				
SP3A-94	Jul-06	D		23			7.72	346											18 J				
SP3A-94	Nov-06		Dry																				
SP3A-94	Apr-07		Dry				8.59																
SP3A-94	Nov-07		Dry																				
SP3A-94	Apr-08		121	8	440	<1	8.02	722	34.2	490	<2	<0.05	13.7	< 0.00126	0.04	0.012	9.5	0.035	10				
SP3A-94	Aug-08	2	404	25	400	-	8.87	377	07.0	500		0.00	17.9	0.00042	1.6	0.000	0.05	0.034	17				
SP3A-94 SP3A-94	Nov-08 Apr-09		121 Dry	9	460	<1	7.25	770	37.9	530	<2	0.08	1.2	0.00013	0.23	0.062	0.65	0.012	6	-			
SP3A-94 SP3A-94	Nov-09	\vdash	Dry																	 			
SP3A-94	Mar-10		Dry																				
SP3A-94	May-10		219	22.4			8.23								0.72			0.690	121				
SP3A-94	Nov-10		Dry															2.300					
SP3A-94	Oct-11		85.1	121	320	3.7	8.35	1060	26.2	594	< 2.0	<0.050	7.5		0.089	0.0024	2.4	0.008	< 3.0				
SP3A-94	Aug-12			57.9											1.84				47.6				
SP3A-94	Nov-12		102	12.6	350	<1.0	7.32	630	23.1	576	< 2.0	<0.050	2.3	< 0.00010	0.122	0.0056	14	0.0204	2.0				
SP3A-94	May-13		69.3	13.7	255	<0.001	7.56	525	19.9	298	<5	0.02	21.0	0.30	0.24	0.05	5.6	0.03	<10				
SP3A-94	Oct-13		60.8	9.23	197	<0.001	7.85	839	10.9	268	<5	<0.02	7.1	0.21	0.16	0.009	15.2	0.03	11				
SP3A-94	Jun-14		Dry																				

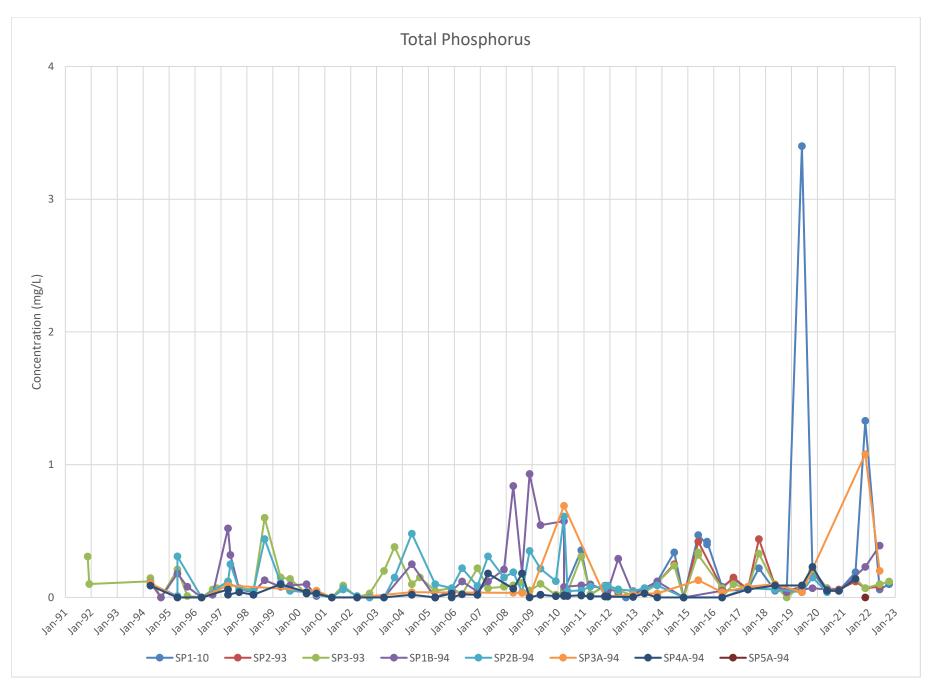
Location	Sampling Date	Notes		Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD ₅	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1981 - 2012)	mę	J/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un	its ('13 - '14)	mg	J/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP3A-94	Nov-14	Ir	IS																				
SP3A-94	May-15	50	.3	9.18	222	<0.001	7.49	332	23.4	292	8.00	<0.02	23.5	0.31	0.58	0.105	32.8	0.13	16				
SP3A-94	Sep-15	D	ry																				
SP3A-94	Apr-16	85	.1	4.41	330	<0.001	7.25	588	28.6	342	<5	0.02	12.5	0.08	0.29	0.020	12.1	0.04	10				
SP3A-94	Oct-16	D	ry																				
SP3A-94	Apr-17	64	.4	4.82	230	<0.001	7.25	469	16.9	284	<5	< 0.02	15.19	0.10	0.28	0.020	8.1	0.08	<10				
SP3A-94	Sep-17	D	ry																				
SP3A-94	May-18	77	.8	4.42	284	0.002	7.75	443	21.7	308	5	< 0.02	13.7	0.50	0.24	0.055	4.6	0.10	12				
SP3A-94	Oct-18	73	.4	8.04	246	0.002	7.27	431.1	15.2	326	5	0.02	11.7	0.08	<0.010	0.015	2.2	0.42	12				
SP3A-94	May-19	57	.3	2.34	215	0.003	7.42	490	17.4	290	11	< 0.02	22.05	< 0.001	<0.010	<0.002	17.4	0.04	26	248	< 0.05	< 0.05	4.7
SP3A-94	Oct-19	D	ry																				
SP3A-94	May-20	D	ry																				
SP3A-94	Oct-20	D	ry																				
SP3A-94	Jun-21	D	ry																				
SP3A-94	Nov-21	88	.3	7.44	298	0.013	7.25		18.9	322	5	0.02	7.55	< 0.001	1.93	0.304	16.8	1.08	59	269	< 0.05	< 0.05	4.29
SP3A-94	May-22	63	.3	240.00	356	0.094	7.53	1658	48.0	894	17	24.6	20.7	0.013917116	0.953	0.069	5.4	0.20	13	520	<0.07	<0.05	176
SP3A-94	Oct-22	N	Α																				
Minimum		50	.3	2.3	197.0	0.0	7.1	332.0	10.9	104.0	2.0	0.0	1.2	0.0	0.0	0.0	0.7	0.0	2.0	248.0	0.0	0.0	4.3
Maximum		16	4.0	427.0	691.0	7.0	8.9	1658.0	68.4	894.0	17.0	24.6	23.5	0.5	3.5	0.3	85.0	1.1	220.0	520.0	0.0	0.0	176.0
Average		90	.8	69.4	345.6	1.4	7.7	804.7	30.1	498.7	6.1	1.7	13.6	0.2	0.7	0.1	15.6	0.2	26.5	345.7	< 0.07	<0.05	61.7

																1					1		
Location	Sampling Date	lotes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	SQL	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	ron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	SS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1		Z	mg/L	mg/L	mg/L	μg/L	ш	µS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Uni			mg/L	mg/L	mg/L	mg/L		µS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP4A-94	Apr-94		76.9	109	299	<1.0	8.00	900	26.1	650	<2.0	<0.02			0.54	0.04	46	0.089	8.0				
SP4A-94	Sep-94		Dry																				
SP4A-94	Apr-95		83.2				8	700	21	491	6	0.04			0.21	0.04	67	<0.01	27				
SP4A-94	Sep-95		Dry	74			8.14 ⁽¹⁾												40				
SP4A-94 SP4A-94	Oct-95 Apr-96		65	71 190	267	<1.0	8.41	1260	25.4	792	<5.0	0.006			0.249	<0.015	14.3	<0.01	42 6.0				
SP4A-94	Sep-96		Dry	130	201	<1.0	0.41	1200	25.4	132	\3.0	0.000			0.243	V0.013	14.5	V0.01	0.0				
SP4A-94	Oct-96		2.,	140			7.9 ⁽¹⁾												76				
SP4A-94	Apr-97		116	234	521	<1.0J	8.90	1300	56.2	727	<2.0	<0.004			0.184	0.017	6.9	0.06J	6.0				
SP4A-94	Apr-97	D	115	243	521	3J	8.90	1300	56.9	773	3.4	<0.004			0.178	0.017	7.6	0.02J	6.0				
SP4A-94	Sep-97		181	207	659	<1.0	7.80	1600	50.4	1140	20.0	0.009			0.212	0.042	15.3	0.04	1.0				
SP4A-94	Apr-98			100	0.15		8.06	857		=	4 0111								32				
SP4A-94	Apr-98		74.1 77.6	146	315 328	<1.0	7.90 7.90	1220 1220	31.5 32.7	728 736	<4.0UJ	0.062U			0.223	<0.015	11.4	0.02	3 UJ 1 UJ				
SP4A-94 SP4A-94	Apr-98 Sep-98	D	Dry	146	320	<1.0	7.90	1220	32.1	730	<4.0	0.056			0.2	0.15	11.8	0.02	1 03				
SP4A-94	Apr-99		140	215	537	<1.0	8.07	1580	45.5	1040	<6.0	0.044			0.268	0.07	13.5	0.10 U	9.0				
SP4A-94	Jun-99	2		200	00.	11.0	0.01		.0.0		40.0	0.0			0.200	0.01		0.100	53				
SP4A-94	Sep-99		Dry																				
SP4A-94	Apr-00		144	209	566	<2.0*	8.01	1590	50.1	936	<6	<0.009			0.31	0.0287	14	0.04	15				
SP4A-94	Apr-00	D	145	211	269	<2.0*	8.01	1590	50.3	1010	<6	<0.009			0.312	0.0284	13.9	0.03	13				
SP4A-94 SP4A-94	Jun-00 Sep-00	2	59.3	54.3 73.6	236	<2.0*	7.58 7.98	649 710	21.3	704	4.1	0.028			0.173	0.002	1.7	0.03	18 8.0				
SP4A-94 SP4A-94	Apr-01		90.8	109	344	<2.0*	7.55	823	28.4	752	<4.0	0.028			0.173	0.002	117	<0.10*	52				
SP4A-94	Jun-01	2	00.0	162	011	\Z.0	7.91	1170	20.1	702	٧1.0	0.00			0.177	0.010		40.10	<2				
SP4A-94	Sep-01		Dry				-																
SP4A-94	Apr-02		72.7	102	284	<1.0	7.73	845	24.9	542	<4.0	<0.05			0.2	0.007	7.1	<0.01	10				
SP4A-94	Sep-02		Dry																				
SP4A-94	Oct-02	2	400	110	220	4	7.50	1150	24	400	2.0	0.05			0.47	0.000	444	0.00	2.5				
SP4A-94 SP4A-94	Apr-03 Jun-03	2	100	86.1 91.8	339	1	8.10 8.14	837 734	31	499	<3.0	<0.05			0.47	0.026	14.1	<0.02	1.0 16				
SP4A-94	Sep-03		Dry	31.0			0.14	7.54											10				
SP4A-94	May-04		79.5	75.4	294	<2.0*	8.20	731	23.3	522	<5	0.03	20.6	0.00185	0.318	0.015	4.2J	0.02 U	<12				
SP4A-94	May-04	D	79.4	82	294	<2.0*	8.20	797	23.2	522	<5	0.03		0.00189	0.321	0.014	4.3J	0.02 U	<12				
SP4A-94	Sep-04		Dry																				
SP4A-94	Apr-05		79	58.9	284	<2.0*	7.90	710	21.1	498	<5	<0.02		< 0.00028	0.437	0.013	2.1	<0.05	<12				
SP4A-94 SP4A-94	Apr-05 Jul-05	D 2	79.4	58.8 46.4	285	<2.0*	7.90 7.99	710 683	21	474	<5	<0.02		< 0.00028	0.412	0.012	2.3	<0.05	<12 <12				
SP4A-94 SP4A-94	Nov-05	4	101	100	349	<1.0	7.99	797	23.6	580	<5	<0.02		< 0.00006	0.512	<0.01	4.6	0.03	<12	-			
SP4A-94	Nov-05	D	99.3	98.5	345	<1.0	7.50	797	23.6	588	<5	<0.02		< 0.00006	0.503	<0.01	4.6	<0.02	<12				
SP4A-94	Apr-06	Ħ	82	91	280	<1.0	8.83	799	18	510	<2	<0.05		< 0.00779	0.5	0.03	4.8	0.024 U	15				
SP4A-94	Jul-06	2		32			7.55	289											32				
SP4A-94	Nov-06	Ш	97	68	350	<1.0	7.54	805	27	510	<2	<0.05		< 0.00022	0.1	0.017 U	4.5	0.019 U	7.0				
SP4A-94	Apr-07	Н	68.2	81	260	<1.0	8.26	683	22.8	470	<2	<0.05		< 0.00126	0.19	0.006	2.8	0.18	6.0				
SP4A-94 SP4A-94	Nov-07	Н	Dry 101	108	350	<1.0	8.24	896	24.3	560	-2	-0.0F	12.7	< 0.00191	0.84	0.037	23	0.066	110				
SP4A-94 SP4A-94	Apr-08 Aug-08	2	101	108	330	<1.0	8.24	349	24.3	000	<2	<0.05	17.6	< 0.00191	6.8	0.037	∠3	0.066	99	-			
SP4A-94	Nov-08		110	105	390	<1.0	7.41	944	27.5	580	<2	0.06	0.8	0.00014	0.8	0.011	3.5	<0.006	7.0	 			
SP4A-94	Apr-09		62.6	107	252	<1.0	8.49	735	23.3	488	2.6	0.065	24.5	0.00941	0.331	0.0083	15.1	0.0202	18				
SP4A-94	Apr-09	D	58.4	107	251	<1.0	8.49	735	25.6	514	2.6	10.063U		0.00941	0.321 U	0.0088	13.9	0.0201	16.4 U				
SP4A-94	Nov-09		121	230	469	<1.0	7.98	1420	40.4	918	<2.0	< 0.050	7.7	< 0.000729	0.247	0.0071	5.3	0.0091	<3.0				
SP4A-94	Mar-10	Ш	92.1	140	330	<1.0	8.43	1260	24.4	634	<2.0	< 0.050	6.3		0.125	0.003	4.2	0.011 U	<3.0				
SP4A-94	May-10			106			8.40								< 0.050			0.0167	5.6	-			
SP4A-94 SP4A-94	May-10 Nov-10	\vdash	104	106 130	370	<1.0	8.40 7.27	1020	26.9	658	<2.0	< 0.050	8.1		< 0.050 0.142	0.0087	8.7	0.0103 0.0161	6.4 3.6				
SP4A-94 SP4A-94	Nov-10	\vdash	104	130	376	<1.0	7.27	1020	26.9	644	<2.0	< 0.050	8.1		0.142	0.0087	8.6	0.0161	3.6				
SP4A-94	Mar-11	\vdash	85.1	121	320	3.7	8.35	1060	26.2	594	<2.0	< 0.050	7.5	<0.00165	0.104	0.0008	2.4	0.0142	<3.0	 			
J (U-T	11101 11		UU. I		U_U	U.1	0.00		-0.4	557	0	-0.000	0	-0.00100	0.000	U.UUL-1		0.000	-5.0				

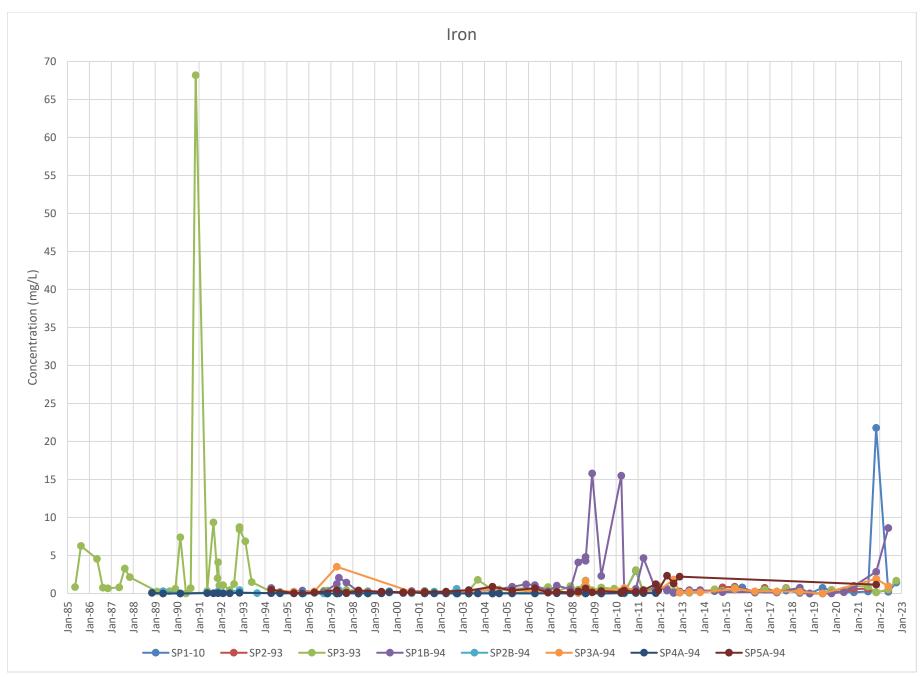
Part										ı						T			1		Г			
Separation February Februar	Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenois		Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	as	as	Sodium
SP4A-94 Oct-11 0	CRA Units (1	981 - 2012)	_	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU		mg/L	mg/L	mg/L	mg/L	mg/L
SP4A-94 Oct-11 0 D No 89	Burnside Uni	ts ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	ပို	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP4A-94 Aug-12 14.2 14		Oct-11			88.7																			
SP4A-94 Nov-12 14.2 14.0 450 <1.0 7.28 408 7.28 408 7.27 7.28 408 7.28 7.28 408 7.28	SP4A-94	Oct-11	D		89			8.27	970					12.7		< 0.050			0.0071	3.6				
SP4A-94 Nov-12 122 140 450 410 7.32 920 35.2 762 <2.0 <0.050 7.2 <0.00015 <0.085 <0.003 68 <0.0034 <2.0 <		Dec-11		101		355	<1.0		813	25.0	506	<2.0	<0.050	5.6	< 0.00087	0.059	0.004	6	0.0056	3.6				
SPAR-94 May-13 7.77 116 293 0.001 8.13 904 24.0 492 4.5 0.02 2.47 1.39 0.12 0.009 10.4 0.03 16 16 16 17 18 18 18 18 18 18 18	SP4A-94	Aug-12			14.2				408					30.2		1.6		62		4.4				
SPAR-94 Oct-13 103 77.3 351 <0.001 8.06 852 22.8 528 <5 <0.02 9.0 0.39 0.05 0.003 3.6 <0.02 <10	SP4A-94	Nov-12			140	450				35.2	762	<2.0	<0.050	7.2	< 0.00015		0.003	68	0.0034	<2.0				
SPAA-94 Jun-14 Dry		May-13		77.7	116	293	<0.001	8.13	904	24.0	492	<5	0.02	24.7	1.39	0.12	0.009	10.4	0.03	16				
SP4A-94 Nov-14 112 154 420 4 112 154 420 4 420	SP4A-94	Oct-13		103	77.3	351	<0.001	8.06	852	22.8	528	<5	<0.02	9.0	0.39	0.05	0.003	3.6	<0.02	<10				
SPA-94 May-15 Dry May-16 Dry May-16 Dry May-17 361 <a a="" href-16<=""> Dry May-16 Dry May-17 361 <a href-16<="" th=""> Dry May-18 Apr-16 Dry Dry May-18 Apr-17 B2.2 135 299 <a href-18<="" th=""> Say-17 Dry May-18 Apr-17 Apr-17	SP4A-94	Jun-14		Dry																				
SPAA-94 Sep-15 Dry T GPAA-94 Apr-16 97.5 174 361 <0.001 8.46 1108 28.6 620 <5 <0.02 15.5 0.09 0.007 15.2 <0.02 12	SP4A-94	Nov-14		112	154	420	<0.001	8.38	1118	34.2	696	<5	< 0.02	9.0	0.79	0.09	0.004	6.9	<0.02	<10				
SP4A-94 Apr-16 97.5 174 361 <0.001 8.46 1108 28.6 620 <5 <0.02 15.9 1.55 0.09 0.007 15.2 <0.02 12 SPA4-94 Oct-16 Dry </td <td>SP4A-94</td> <td>May-15</td> <td></td> <td>Dry</td> <td></td>	SP4A-94	May-15		Dry																				
SP4A-94 Oct-16 Dry Dry Column SP4A-94 Apr-17 82.2 135 299 <.0001 8.04 1017 22.7 534 <5 <0.02 19.17 0.79 0.39 0.026 59.1 0.06 52 SP4A-94 SP4A-94 Nay-18 49.7 149 184 <0.001 8.83 811 14.6 494 <5 <0.07 16.21 0.16 0.333 0.078 10.2 0.09 <10 SP4A-94 May-18 49.7 149 184 <0.001 8.83 811 14.6 494 <5 <0.02 14.3 0.75 <0.010 0.018 59.5 0.06 10 SP4A-94 May-19 69.7 57 221 <0.001 7.94 605 11.4 332 <5 <0.02 14.3 0.002 0.04 <0.002 13.7 0.09 10 223 3.11 <0.05 28.8 <0.002 7.94 60.2 <0.02 7.0 <th< td=""><td>SP4A-94</td><td>Sep-15</td><td></td><td>Dry</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SP4A-94	Sep-15		Dry																				
SP4A-94 Apr-17 82.2 135 299 <0.001 8.04 1017 22.7 534 <5 <0.02 19.17 0.79 0.39 0.026 59.1 0.06 52 SP4A-94 Sep-17 Dry </td <td>SP4A-94</td> <td>Apr-16</td> <td>9</td> <td>97.5</td> <td>174</td> <td>361</td> <td><0.001</td> <td>8.46</td> <td>1108</td> <td>28.6</td> <td>620</td> <td><5</td> <td>< 0.02</td> <td>15.9</td> <td>1.55</td> <td>0.09</td> <td>0.007</td> <td>15.2</td> <td>< 0.02</td> <td>12</td> <td></td> <td></td> <td></td> <td></td>	SP4A-94	Apr-16	9	97.5	174	361	<0.001	8.46	1108	28.6	620	<5	< 0.02	15.9	1.55	0.09	0.007	15.2	< 0.02	12				
SP4A-94 Sep-17 Dry May-18 49.7 149 184 < 0.001 8.83 811 14.6 494 <5 < 0.07 16.21 0.16 0.333 0.078 10.2 0.09 <10	SP4A-94	Oct-16		Dry																				
SP4A-94 May-18 49.7 149 184 <0.001 8.83 811 14.6 494 <5 <0.07 16.21 0.16 0.333 0.078 10.2 0.09 <10 SP4A-94 Oct-18 92.7 83.9 295 <0.001	SP4A-94	Apr-17		82.2	135	299	<0.001	8.04	1017	22.7	534	<5	<0.02	19.17	0.79	0.39	0.026	59.1	0.06	52				
SP4A-94 Oct-18 92.7 83.9 295 <0.001 8.18 739 15.5 502 <5 <0.02 14.3 0.75 <0.010 0.018 59.5 0.06 10 SP4A-94 May-19 69.7 57 221 <0.001 7.94 605 11.4 332 <5 0.04 21.81 0.002 0.04 <0.002 13.7 0.09 10 223 3.11 <0.05 28.8 SP4A-94 Oct-19 67.3 78.2 218 0.004 7.99 523 12.1 390 <5	SP4A-94	Sep-17		Dry																				
SP4A-94 May-19 69.7 57 221 <0.001 7.94 605 11.4 332 <5 0.04 21.81 0.002 0.04 <0.002 13.7 0.09 10 223 3.11 <0.05 28.8 SP4A-94 Oct-19 67.3 78.2 218 0.004 7.99 523 12.1 390 <5	SP4A-94	May-18	4	49.7	149	184	<0.001	8.83	811	14.6	494	<5	< 0.07	16.21	0.16	0.333	0.078	10.2	0.09	<10				
SP4A-94 May-19 69.7 57 221 <0.001 7.94 605 11.4 332 <5 0.04 21.81 0.002 0.04 <0.002 13.7 0.09 10 223 3.11 <0.05 28.8 SP4A-94 Oct-19 67.3 78.2 218 0.004 7.99 523 12.1 390 <5	SP4A-94	Oct-18		92.7	83.9	295	<0.001	8.18	739	15.5	502	<5	<0.02	14.3	0.75	<0.010	0.018	59.5	0.06	10				
SP4A-94 May-20 88.3 86 289 <0.001 7.92 847 16.60 470 <5 <0.02 17.3 <0.001 0.235 0.04 4.0 0.05 <10 241 4.64 <0.25 44.1 SP4A-94 Oct-20 53.06 185 194 <0.001		May-19	-	69.7	57	221	<0.001	7.94	605	11.4	332	<5	0.04	21.81	0.002	0.04	<0.002	13.7	0.09	10	223	3.11	<0.05	28.8
SP4A-94 Oct-20 53.06 185 194 <0.001 7.98 776 14.99 622 <2 0.02 11.2 <0.001 0.429 0.043 9.3 0.05 <10 192 <0.25 <0.25 76.49 SP4A-94 Jun-21 36.70 355 176 0.002 7.96 2109 20.60 936 <2	SP4A-94	Oct-19	(67.3	78.2	218	0.004	7.99	523	12.1	390	<5	<0.02	NA	NA	0.426	0.05	43.4	0.23	28	182	1.36	<0.10	37.0
SP4A-94 Oct-20 53.06 185 194 <0.001 7.98 776 14.99 622 <2 0.02 11.2 <0.001 0.429 0.043 9.3 0.05 <10 192 <0.25 <0.25 76.49 SP4A-94 Jun-21 36.70 355 176 0.002 7.96 2109 20.60 936 <2	SP4A-94	May-20		88.3	86	289	<0.001	7.92	847	16.60	470	<5	<0.02	17.3	<0.001	0.235	0.04	4.0	0.05	<10	241	4.64	<0.25	44.1
SP4A-94 Nov-21 Dry	SP4A-94				185	194	<0.001	7.98	776	14.99	622	<2	0.02	11.2	<0.001	0.429	0.043	9.3	0.05	<10	192	<0.25	<0.25	76.49
SP4A-94 Nov-21 Dry	SP4A-94	Jun-21				176	0.002		2109		936	<2			0.057	1.17				72	200		<0.05	
SP4A-94 May-22 NA	SP4A-94	Nov-21		Dry																				
SP4A-94 Oct-22 Dry	SP4A-94	May-22																						
Minimum 36.7 14.2 176.0 0.0 7.3 289.0 11.4 332.0 2.6 0.0 0.8 0.0 0.0 0.0 1.7 0.0 1.0 182.0 1.4 0.0 28.8 Maximum 181.0 355.0 659.0 3.7 8.9 2109.0 56.9 1140.0 6.0 0.1 30.2 1.6 6.8 0.2 68.0 0.2 110.0 241.0 4.6 0.0 151.0																								
Maximum 181.0 355.0 659.0 3.7 8.9 2109.0 56.9 1140.0 6.0 0.1 30.2 1.6 6.8 0.2 68.0 0.2 110.0 241.0 4.6 0.0 151.0																								
Maximum 181.0 355.0 659.0 3.7 8.9 2109.0 56.9 1140.0 6.0 0.1 30.2 1.6 6.8 0.2 68.0 0.2 110.0 241.0 4.6 0.0 151.0	Minimum		;	36.7	14.2	176.0	0.0	7.3	289.0	11.4	332.0	2.6	0.0	0.8	0.0	0.0	0.0	1.7	0.0	1.0	182.0	1.4	0.0	28.8
	Maximum		1	81.0		659.0	3.7		2109.0	56.9	1140.0	6.0	0.1	30.2	1.6	6.8	0.2	68.0	0.2	110.0	241.0	4.6	0.0	
	Average		9	91.4			0.8		944.2		631.2		0.0	14.2	0.4	0.4		16.4		21.0	207.6	3.036667	<0.05	67.5
												-												

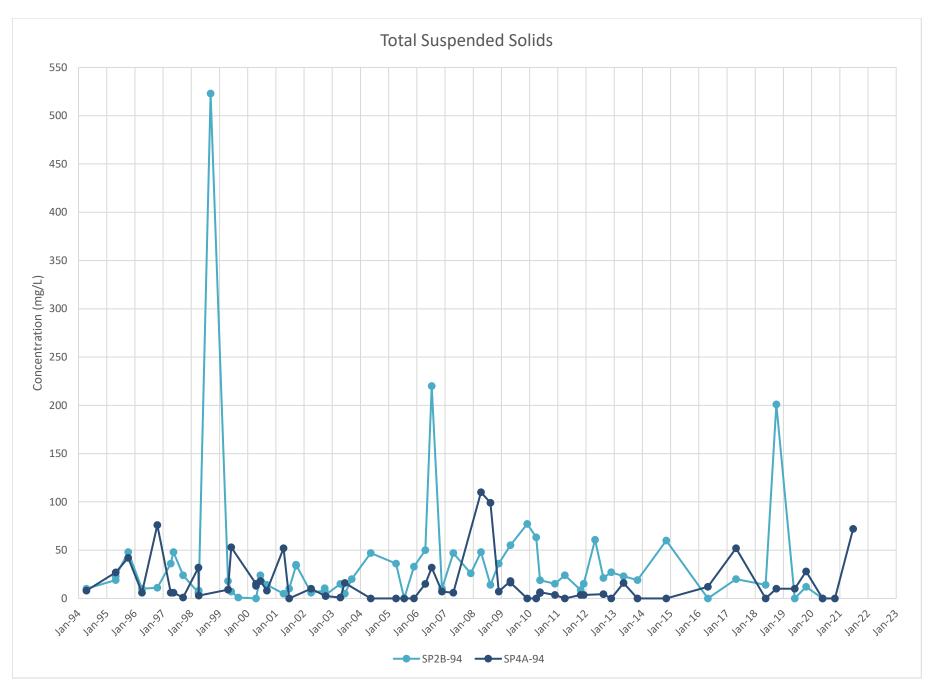


							T								Т		ı						
Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	lron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1		_	mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Uni	ts ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP5A-94	Apr-94		86	138	326	<1.0	8.20	1000	27.1	728	<2.0	<0.02			0.49	0.05	35	0.064	10				
SP5A-94	Sep-94		Dry																				
SP5A-94	Apr-95		105				8.10	1200	27.7	818	<2.0	0.03			0.05	0.05	26	<0.01	19				,
SP5A-94	Sep-95		Dry																				,
SP5A-94	Oct-95	2		224			8.13 ⁽¹⁾												7				
SP5A-94	Apr-96		73.3	291	311	2	8.37	1680	31	1003	<5.0	<0.004			0.134	<0.015	20.2	<0.01	26				
SP5A-94	Sep-96		Dry																				
SP5A-94	Oct-96	2		120			8.00 ⁽¹⁾	-											49				
SP5A-94	Apr-97		139	216	541	3	9.10	1200	47.1	773	5.4	0.011			0.426	0.032	15	0.8	110				
SP5A-94	Sep-97		210	588	799	<1.0	7.70	3200	66.8	1600	56	0.032			0.123	0.165	>200	0.04	262				
SP5A-94	Apr-98	2		119			8.1	1110											6				
SP5A-94	Apr-98		90.2	210	352	<1.0	8.28	1430	30.8	864	<4.0UJ	0.05U			0.385	0.022	9.9	0.05	13				
SP5A-94	Sep-98	\vdash	Dry	000	465		0 :-	40=0	00.0	4000		0.6:-			0.000	0.010	46.5	0.0111	L	-			
SP5A-94	Apr-99		134	223	498	<1.0	8.17	1670	39.8	1030	<6.0	0.015			0.236	0.019	16.2	0.01 U	24				
SP5A-94	Jun-99	2	_	466															59				
SP5A-94	Sep-99		Dry	200		0.0*	0.45	4000	47.0	070		0.000			0.440	0.0457	6.4	0.00					
SP5A-94 SP5A-94	Apr-00	2	145	220 96	557	<2.0*	8.15 7.89	1630 846	47.3	976	<6	<0.009			0.149	0.0157	6.4	0.02	8 32				
SP5A-94 SP5A-94	Jun-00 Sep-00	2	72.5	107	274	<2.0*	7.09	811	22.6	768	5.7	0.098			0.16	0.048	2	0.28	15				
SP5A-94	Apr-01		137	196	489	<2.0*	7.75	1370	35.7	912	<4.0	<0.05			0.174	0.048	7.1	<0.1	13				
SP5A-94	Apr-01	D	141	197	496	<2.0*	7.75	1370	34.9	952	<4.0	<0.05			0.174	0.019	8.6	0.1	17				
SP5A-94	Jun-01	2	171	169	430	\2.0	7.75	1370	04.0	332	V4.0	V0.00			0.130	0.02	0.0	0.1	6				
SP5A-94	Sep-01	-	Dry	100			7.00	1070															
SP5A-94	Apr-02		103	156	380	<1.0	7.70	1080	29.9	717	<4.0	12.5			0.24	0.011	8.8	<0.01	21				
SP5A-94	Sep-02		Dry	.00		11.0			20.0		10	12.0			0.2.	0.011	0.0	10.01					
SP5A-94	Oct-02	2	,	230			7.91	1850											18				
SP5A-94	Apr-03		130	144	336	1	8.23	1180	34	636	<3.0	<0.05			0.44	0.032	16.1	0.07	18				
SP5A-94	Apr-03		120	148	383	1	8.23	1180	35	647	<3.0	< 0.05			0.39	0.028	15.1	< 0.02	8				
SP5A-94	Jun-03	2		215			7.31	1190											128				
SP5A-94	Sep-03		Dry																				
SP5A-94	May-04		107	114	378	<2.0*	8.15/8.15 ⁽¹⁾	975/1080 ⁽¹⁾	27	690	<5	0.03	22.3	0.00186	0.898	0.092	11.5J	0.07	71				, !
SP5A-94	Sep-04		Dry																				,
SP5A-94	Apr-05		96.2	120	335	<2*	7.88	1050	22.9	646	<5	<2		< 0.02653	0.381	0.016	1.6	< 0.05	<12				
SP5A-94	Jul-05	2		135			7.97	1350											20				
SP5A-94	Nov-05		Dry																				
SP5A-94	Apr-06		114	165	390	<1.0	8.85	1160	25	840	<2	<0.05		< 0.00675	0.7	0.04	17	0.033 U	24				
SP5A-94	Jul-06	2	400	97	440		7.73	761	00	070		0.05		0.00001	0.11	0.0011	0.5	0.04011	3				
SP5A-94	Nov-06		120	111	440	<1	7.58	1050	33	670	<2	<0.05		< 0.00021	0.11	0.02 U	2.5	0.016 U	6				
SP5A-94	Apr-07	-	100	155	360	<1	8.11	1000	27.2	710	<2	<0.05		< 0.00088	0.21	0.013	2.4	0.02	3	-			
SP5A-94 SP5A-94	Nov-07 Apr-08	\vdash	101 104	71 118	390 350	2 <1	8.11 7.94	1080 1020	33.8 21.5	660 610	<2	<0.05 <0.05	11.2	< 0.00054 0.00087	0.16J 0.26	0.004	2.5 5.7	0.015 0.033	4 21	-			
SP5A-94 SP5A-94	Apr-08	D	97.9	117	330	<1	7.40	1020	21.5	600	<2	<0.05	11.2	0.00087	0.26	0.013	5.7	0.033	15	-			
SP5A-94	Apr-08 Aug-08	2	51.5	58	550	<u> </u>	8.10	650	∠1.4	000	~4	~0.00	17.2	0.00020	0.26	0.011	5.7	0.027	12	-			
SP5A-94	Nov-08	-	123	147	430	<1	7.26	1060	29.4	740	<2	0.11	2	0.00019	0.00	0.012	1.6	0.009	4				
SP5A-94	Apr-09	\vdash	93.2	114	320	<1.0	8.12	990	21.2	620	<2.0	0.062	20.7	0.00323	0.314	0.0225	7.1	0.0211	13.2				
SP5A-94	Nov-09		Dry											2.23020	1		l		T				
SP5A-94	Mar-10		108	152	368	<1.0	8.20	1380	23.8	682	<2.0	0.051	5.1		0.169	0.013	1.86	0.037	18.8				
SP5A-94	May-10			124			8.32								0.393			0.033	80.4				
SP5A-94	Nov-10		115	162	391	<1.0	7.08	1120	25.4	712	<2.0	<0.050	7.8		0.246	0.021	4.3	0.035	102				
SP5A-94	Mar-11		89	133	324	<1.0	8.26	1120	24.7	622	<2.0	<0.050	4.7	< 0.00083	0.311	0.019	2.7	0.015	38				
SP5A-94	Mar-11	D	93.9	133	337	1.0	8.14	1120	25	622	<2.0	<0.050	4.7	< 0.00083	0.442	0.0234	1.86	0.0191	58				
SP5A-94	Oct-11			100			8.10	1070							1.23			0.0457	92				
SP5A-94	Dec-11		124	73.6	414	<1.0	8.00	950	25.5	558	<2.0	<0.050	4.6	< 0.00060	0.402	0.062	5.8	0.0234	40				
SP5A-94	Apr-12		145	148	529	<1.0	7.57	520	40.2	950	3	<0.050	7.8	< 0.00029	2.34	0.182	32	0.061	184				
SP5A-94	Aug-12			15.4			7.13	427					30.6		1.32		83		3.6	L			



								1														1	
Location	Sampling Date	Notes	Calcium	Chloride	Hardness	Phenols	Field pH	Field Conductivity	Magnesium	TDS	BOD_5	Ammonia	Field Temperature	Unionized Ammonia	Iron	Manganese	Turbidity ⁽¹⁾	Total Phosphorus	TSS	Alkalinity	Nitrate as N	Nitrite as N	Sodium
CRA Units (1981 - 2012)		mg/L	mg/L	mg/L	μg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Burnside Un	its ('13 - '14)		mg/L	mg/L	mg/L	mg/L		μS/cm	mg/L	mg/L	mg/L	mg/L	°C	μg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SP5A-94	04 Nov-12 149 140 530 <1.0 7.09 759 38.4									782	<2.0	< 0.050	4.2	< 0.00007	2.22	0.14	39	0.145	68.5				
SP5A-94	4 May-13 Dry																						
SP5A-94																							
SP5A-94																							
SP5A-94	Nov-14		Dry																				
SP5A-94	May-15		Dry																				
SP5A-94	Sep-15		Dry																				
SP5A-94	Apr-16		Dry																				
SP5A-94	Oct-16		Dry																				
SP5A-94	Apr-17		Ins																				
SP5A-94	Sep-17		Dry																				
SP5A-94	May-18		Dry			-																	
SP5A-94	Oct-18	-	Dry			+																	
SP5A-94		-	Dry																				
SP5A-94 SP5A-94	May-19 Oct-19	_	Dry																				
		-	,			-																	
SP5A-94	May-20	-	Dry			-																	
SP5A-94	Oct-20		Dry																				
SP5A-94	Jun-21		Dry							=00									- 40				
SP5A-94	Nov-21		134	188	455	0.016	8.24		29.3	736	<2	<0.02	6.68	<0.001	0.17	0.033	3.3	<0.02	<10	396	0.19	<0.05	111
SP5A-94	May-22		NA																				
SP5A-94	Oct-22		Dry																				
Minimum			72.5	15.4	274.0	0.0	7.1	427.0	21.2	558.0	3.0	0.0	2.0	0.0	0.1	0.0	1.6	0.0	3.0	396.0	0.2	0.0	111.0
Maximum			210.0	588.0	799.0	3.0	9.1	3200.0	66.8	1600.0	56.0	12.5	30.6	0.0	2.3	0.2	83.0	0.8	262.0	396.0	0.2	0.0	111.0
Average			115.6	163.6	413.3	1.4	8.0	1175.6	31.4	777.3	17.5	1.3	10.7	0.0	0.5	0.0	13.1	0.1	39.8	396.0	0.19	<0.05	111.0
Notes:																							
mg/L	milligrams po	er litre			BOD5	biochemical of	oxygen dema	nd	TSS	total suspe			350	exceeds PWQO									
μg/L	micrograms	per litr	re		NTU	nephelometri	c turbidity uni	ts	TDS	total disso	lved solids	3	350	exceeds CWQG									
μS/cm	micro-sieme				Ins		ater to obtain	a sample	NA	not analyz	ed		<u>350</u>	exceeds APV									
Dry	sampling loc	ation	was dry o	during moni	toring event	; no sample ta	iken		MDL	method de	tection lim	nit	<1.0	not detected above	stated MDL								
1	value measu	ıred in	laborato	ry																			
2	monitoring a	fter ra	infall eve	ent																			
*	MDL exceeds PWQO																						
506/489	duplicate sar	mples	were sul	omitted for a	analysis																		
Un-ionized a	ammonia calc	ulated	using la	b reported a	ammonia, fie	eld temperatur	e and field ph	l															
CWQG	Canadian W	ater Q	uality Gu	uideline for t	the Protection	on of Aquatic L	_ife																
APV	Aquatic Prot	ection	Value: T	able 3.1 Ra	ationale for t	he Developme	ent of Soil and	Groundwater	Standards	for Use at 0	Contamina	ted Sites in	Ontario										
PWQO	Provincial W	ater C	Quality Ol	ojectives. W	/here both a	PWQO and a	an interim PW	QO exist, the ir	nterim is pr	ovide.													
U	the analyte v	vas an	alyzed fo	or, but was i	not detected	above the rep	ported sample	quantitation li	mit														
J	the analyte v	vas po	sitively i	dentified; th	e associate	d numerical va	alue is the app	oroximate cond	entration o	of the analyt	e in the sa	ımple											
UJ	the analyte v	vas no	t detecte	ed above the	e reported s	ample quantita	ation limit; ho	wever, the rep	orted samp	le quantitat	ion limit is	approximat	e and ma	y or may not represe	nt the actual								
	limit of quan	titation	necess	ary to accur	ately and pr	ecisely measu	ure the analyte	in the sample															





APPENDIX F: HISTORICAL LEACHATE QUALITY RESULTS

u Bu 3	e Ignio	ioluble	in in in in in in in in in in in in in i			Φ δ	SS	ite		horous		Ę	£	E _n	E .	en iii				sium	lenum lenum		horous	inm		E &	ue:	E n		ctivity
Locatic Phase Sampli Date Total	BOD S Chloric	000	Ammo	Nitrate	Nitrite	Fluorid	Hardne	TSS	DOC 100	Phospl Phospl	Barium	Berylliu	Bismut	Cadmi	Calciu	Chrom	Coppe	lron	. Fead	Magne	Manga	Nicke	Phospl	Potass	Sodiun	Stronti	Tungst	Vanadi	Zinc Field p	Condu Field Field Tempe
Units mg/L RDL Jun 14 5 RDL Nov 14 5	5 1.0	. mg/L mg/L 25 50	2 1	ng/L mg/L 10 0.5 10 1.0		ng/L mg/L 0.001 0.002		mg/L mg/L 10 1.0 10 10		mg/L mg/L 0.05 0.004 0.5 0.004	0.002	mg/L 2 0.001 2 0.001	mg/L 0.002 0.002		0.25		0.003	mg/L 0.010 0.010	0.002 0.	0.25 0.0	mg/L mg/L 0.002 0.002 0.002 0.002	2 0.003		0.25 0.0	002 0.25	L mg/L mg/ 5 0.005 5 0.005		mg/L 0.002 0.002	0.005 0.005	μS/cm °C
RDL May 15 5 RDL Sept 15 5 RDL Apr 16 5	5 10	100 10 100		1.0 1.0 1.0 2.5 1.0 1.0		0.002 0.001 0.002		10 10 10 10 10 10 10 10		0.5 0.004 0.05 0.004 0.5 0.004	0.002	2 0.001	0.002 0.002 0.002		0.05	0.003 0.001 0.003 0.001 0.003 0.001	0.003	0.010	0.002 0.	0.05 0.0	0.002 0.002 0.002 0.002 0.002 0.001	2 0.003		0.05 0.0	0.05	0.005 0.005 0.005	0.010 0.010 0.010	0.002 0.002 0.002	0.005 0.005 0.005	
RDL Apr 17 5 RDL Sept 17 50 RDL May 19 5	5 0.50 125 4.0	25 150 5	10 1 10 !	10 0.25		0.001 0.01		10 0.50 10 2.0 10 0.5	10	0.25 0.004 0.8 0.004 0.02 0.004	0.002 04 0.002	2 0.001	0.002 0.002 0.002	0.002	0.25 1.0	0.003 0.001 0.003 0.001	0.003 0.003	0.010	0.002 0. 0.002 1	0.25 0.0 1.0 0.0	0.002 0.001 0.002 0.001 0.002 0.002	1 0.003 1 0.003		0.25 0.0 1.0 0.0 0.25 0.0	002 0.25 002 1.0	5 0.005 0.005 0.005	0.010 0.010 0.010	0.002 0.002 0.002	0.004 0.004 0.005	
MH-1 I Nov-91 2706 MH-1 I Dec-91 278	6 660 1 63 41 760	428 371	209 29 248 30	250 0.36 304 0.36	<0.10 <0.10	0.045 0.042	837 3716 1008 3840	100 39 79.5	110	0.085	U,F 0.211 84 0.392	1	<0.04		190	0.013 U	J,L 0.076	3 7.92	0.052 U,L 1 0.023 U,F 1	184 0.3	.394	0.031		374	557	7 3.18 0.00 1 3.22 0.03	09		0.175 7.1 0.105 7.91	2840
MH-1 I Jan-92 2484 MH-1 I May-93 MH-1 I Aug-93	28 405 88 673	441	57.2	<0.10		0.04 0.048				4.07	25 0.05				225	0.000	0.407	15		138 1.		0 005	0.005	000	400	2 240 06	10 0010	0.040	6.93	
MH-1 I Sep-94 MH-1 I Sep-95 MH-1 I Sep-96 MH-1 I Apr-97	19 193 101 321	385 6 61 211	3.32 60 67 88	32 <0.1 0.6 3.84 8.7 2.2		0.065 0.012 0.007		27 214 177		1.37 0.10 0.26 1.53 0.37 0.16	0.32 65 0.126	2 < 0.001		<0.003	95.1 128	<0.005 <0.005	3.03 5 4.57	12.4 6.28	0.196 25 0.052 62	25.7 0.1 62.4 0.1	.161 0.00	0.01 7 <0.01	0.45	98.3 <0.	052 121 .007 239	9 2.68 0.00	03 04 <0.05	0.016 0.007 0.006	 	1100 2650
MH-1 I Apr-97 MH-1 I Sep-98 MH-1 I Oct-99	213 605	206 347 	136 19 3.92 16	80 < 0.1		0.018 0.016 <0.002		126 380 16		1.12 0.53 15.8 14.7 0.19 0.11	7 18.9	9	<0.050		43.8 < 548 150	<0.010		694	<0.001 2	134 0.8 225 0.9 24.1 0.7	.995 0.04 ⁻		1.12 15.8 0.059	225 <0.0	0001 451 56.	1 0.78 0.00)12	0.064 0.002	0.072 6.9 0.141 6.5 0.0052	2900 4300
MH-1 I Sep-00 MH-1 I Sep-01 MH-1 I Sep-02	119 592	5 524 1110 23	151 1	47 <0.04		<0.002 <0.001 0.005		1400 4200 89.5		10.9 0.62 <0.1 0.33 0.19	10 0.176				351	<0.02 <0.008 <0.02 <0.003 0.03 0.0066	3 <0.02	2 4.38	<0.01 3	338 0.	0.632 <0.02 0.98 <0.0 0.54 0.002	1 0.112		561 <0.	.001 141	9 3.53 0.07 0 2.44 0 2.1 0.02			0.08 6.69 0.206 6.74 0.042 7.05	5530
MH-1 I Apr-03 MH-1 I Sep-03	5 40.6 39 527	3 29 237	1.4 2 195 1	2.6 0.7 97 <0.5		0.001 0.014		3 102		<0.02 0.2 2.38 <0.0	2 0.055 04 0.562	5 <0.0007 2 <0.001	<0.0011 <0.023	<0.0005 <0.003	100 213	0.001 <0.000 <0.005 <0.009	0.0072 5 < 0.004	2 0.53 4 39.4	<0.0011 1 <0.025 1	19 0.0 186 0.3	.029 0.001 .378 <0.00	0.0034 06 <0.01	2.43	12 <0.0 259 <0.	0003 38 .007 424	0.34 0.00 4 2.53 0.0°	07 <0.0005 13 <0.03	0.0011 <0.003	0.041 7.69 0.019 7.54 ⁽¹⁾	646 5330
MH-1 I Sep-04 2210 MH-1 I Nov-05 1330 MH-1 I Nov-06 280	0 83 226	218 98 30		73 0.34J 39 <0.5 1.6 <2		0.055 0.025 <0.001		82 55.9 52 22.4 17 <40		1.15 0.61 0.02 0.04 0.06		8 <0.005	<0.01		216	0.007 0.007 <0.01 <0.009 <0.001 0.0029	5 <0.006	6 17.6	<0.01 78	78.7 0.6	0.37 <0.00 0.611 <0.0 0.054 <0.00	1 <0.01	0.61	93.9 <0.	.002 204 .005 175 0001 24	5 1.82 <0.0	01	0.003 <0.005 <0.001	0.11 9.49 0.02 6.39 0.013 6.94	2910
MH-1 I Nov-07 1300 MH-1 I Nov-08 1100	0 20 328 0 11 164	150 80	69 7	00 <2 77 0.4		0.005 0.006		36 157 79 97		1.8 0.6 0.73 <0.	6 0.5 .1 0.2	<0.01	<0.01 <0.01	<0.001	240 258	<0.5 <0.008 <0.01 <0.008	8 <0.01 8 <0.01	26.6J 16.6	<0.01 1 <0.01 8	116 0. 83 0.	0.55 <0.0° 0.72 <0.0°	1 <0.02 1 <0.02	1.8	140 <0. 80 <0.	.001 267 .001 140	7 2.19 0.0 0 1.84 <0.0	04 <0.1 02 <0.1	<0.01 <0.01	0.05 7.00 0.15 6.18	3450 2680
MH-1 I Nov-09 1740 MH-1 I Nov-10 794 MH-1 I Dec-11 1040	4.3 123	167 66 170	43.9 44	54 <2.0		0.0090 0.0030 <0.0010		64.0 59.1 17.3 37.0 85 40.3		1.65 <0.1	29 0.144		<0.0010	+	162 (<0.010	0.0025	0 29.2 5 8.99 0 0.57	<0.0010	121 0.6 43 0.4 11.2 0.2	.431 0.001		0 0.385	43 <0.0	0001 99.3	4 2.47 <0.0 3 1.09 0.00 2 0.123 <0.0	05 <0.010		<0.030 6.8 <0.0030 6.4 0.057 7.21	
MH-1 I Nov-12 1540 MH-1 I Jun-14 1530 MH-1 I Nov-14 1230	0 84 352	170 387 311	114 1	14 <2.0 19 <0.5 86 <1.0		<0.01 0.004 0.015		49 <40 12000 41.4 7400 30.0		1.19 0.05 0.36 0.02 79.4 0.00	24 0.274	4 <0.001	<0.002	<0.002	276	0.00225 0.0047 0.005 0.006 0.003 0.007	< 0.003	3 52.3	<0.002 1	30.4 0.6 100 0.6 78.5 0.5		02 < 0.003	3	94 <0.0 115 <0. 82.9 <0.	.002 215			0.0022 <0.002 <0.002	0.0087 6.42 0.009 6.62 0.007 NA	>3999 14.3
MH-1 I May-15 1650 MH-1 I Sep-15 1640	0 45 261	244	120 2	236 <1.0 41 <2.5		0.013 0.007 0.021	•	10500 48.0 30800 44.2		1.6 0.01 0.28 0.00	12 0.252	2 <0.001	<0.002	<0.001	188 <	<0.003 0.004	<0.003	3 30.7		85.0 0.6	.657 <0.00	0.004		110 <0. 130 <0.	.002 201	1 2.03		<0.002		1506 9.81
MH-1 I Apr-16 1350 MH-1 I Oct-16 Ins MH-1 I Apr-17 1180		121		7.3 <1.0 8.4 <0.25		0.017		1630 63.9 232 50.2		9.7 0.07						<0.003 0.003 <0.003 0.004								90.2 <0.				<0.002 0.004	<0.005 6.76 0.022 6.80	
MH-1 I Sep-17 Ins MH-1 I May-18 Ins																														
MH-1 I Oct-18 Ins MH-1 I May-19 976 MH-1 I May-20 Ins	3 <5 133	60	53.2 5	4.5 0.41	<0.25	0.021	710	27 28.5	22.1	0.7 0.00	0.13	1 <0.001	<0.002	<0.001	197	<0.003 0.002	<0.003	3 0.085	<0.001	53 0.	.686 <0.00	02 <0.003	3	49.4 <0.	.002 83.7	7 1.34	<0.010	<0.002	0.023 6.63	1854 21.36
MH-1 I Jun-21 Ins MH-1 I Nov-21 MH-1 I May-22 Ins																														
MH-1 I Oct-22 Ins																														
Maximum 278°			248 3	1.6 0.11 304 3.84 7.36 0.918	0	0.001 0.065 0.02077		3 22.4 30800 157 2410 60.6	238 110	0.04 0.00 79.4 14.7 6.145 0.8559	7 18.9	9 0	0 0 <0.002	0.0008	548	0.001 0.0009 0.034 0.01 0.009159 0.0051	4.57		0.196 3		1.15 0.04 ⁻	1 0.112	1 0.04 15.8 1 2.739	561 0.0	052 141	0.123 0.00 0 10.1 0.07 53 2.319 0.01	71 0.046	0.0011 0.064 0.0102769	0.0052 6.18 0.453 9.49 0.0772 7.0714	7800 21.36
MH-3 II/III May-93	1777 320		43.8			0.256	1442 2847								426			12	9	91.9 5	5.6									
MH-3 I/ Aug-93 MH-3 I/ Sep-94 MH-3 I/ Sep-95	4695 112	2235 6 7348 0 6569		<0.1 012 <0.10 691 <0.10)	1.11 1.9 0.991		520 180		13.1 0.70 5.3 2.25					367 531					365 2. 470 3.			9.63 0.93			0 2.02 0.07 0 3.08 0.12		0.027 0.038	0.568 8 1.91 7.4	8200 9300
MH-3 II/III Sep-96 MH-3 II/III Apr-97	2063 163 1349 129	5 2323 4 2645	466 55 252 2	<0.10<0.10)	0.447 0.599		71 80		0.45 0.54 4.8 1.39	43 0.162 9	2 <0.001 <0.050	<0.04 <0.050	<0.003 0.0016	234 43.9	0.039 0.014 0.039 0.0188	0.741 8 0.078	7.09 3 22.2	0.05 3 0.012 3	327 1. 383 2	1.33 <0.00 20 0.023	06 0.08 3 0.078	4.91 4.8	497 <0. 344 <0.0	.007 127 0001 871	0 2.31 0.07 1 5.07 <0.0	78 <0.05	0.021	0.208 7.59 1.59 7.3	9500 7000
MH-3 II/III Sep-98 MH-3 II/III Oct-99 MH-3 II/III Sep-00	297 158 20.7 762 108 13		32 34	'97 <0.1 4.2 1.59 211 1.79		0.027 0.008 <0.002		131 40 100		7.4 0.97 1.76 0.25 8.64 0.69	5 0.091	14	<0.04	-	201 (0.032 <0.000 0.0109 0.0063 0.025 <0.008	0.0273	3 2.57	0.0134 1		0.696 0.017 0.376 0.007 1.26 <0.02	72 0.0104	7.4 1 1.27 1 4.86	273 0.0	002 542	0 2.61 2 0.751 0.01 1 1.35 0.10		0.023 0.0113 0.09	0.142 7.1 0.0535 0.126 7.5	9300
MH-3 II/III Sep-01 MH-3 II/III Sep-02	120 191 35 740	0 1030 80	130 1	30 <0.5		<0.001 0.003		24 45.3		<0.1 3.2 0.38	10 2.32 3 J 0.14	4 <0.001	<0.001	0.011J	350 <		0.11	5.0 J	0.010J 1	120 1	0.36 <0.0° 1.1 0.018	3J 0.053		235 <0. 190 <0.0	.001 516 0001 480	6 4.23 0 1.6 0.04	42J <0.01		0.183 7.07 0.19J 7.41	13400
MH-3 II/III Sep-02 MH-3 II/III Apr-03 MH-3 II/III Sep-03	675 118	90 0 1640 0 1450	373 4	30 <0.5 07 <1.5 170 0.6		0.004 0.04 0.034		44.7 2190 20		3.2 0.26 13 9.3 9 0.3	3 0.71		<0.0011		340	<pre><0.001</pre>	0.063		0.02 2	110 260 1 335 0.8	1 0.01 1.7 0.007 0.589 <0.00	76 0.12		320 0.0 775 <0.	0021 770	0 1.4 0.02 0 1.7 0.2 0 1.5 0.1	2 0.0072	0.019	0.15 0.36 7.09 0.165 7.77 (1	
MH-3 II/III Sep-04 6110 MH-3 II/III Nov-05 4580 MH-3 II/III Nov-06 4690	0 117 169	0 1480 0 897 0 1300	744 7	140 <0.05Us '51 <5.0 050 <2		0.271 0.082 0.094		42 102 130 95.8 80 58		5.69 3.43 0.23 10 0.2	37 0.214	5 <0.002 4 <0.005 4 <0.01				0.098 0.03 0.072 0.026 0.08 0.017	0.006	3.49	<0.01 2	244 0.8	0.817 0.000 0.803 <0.0 0.9 <0.0	1 0.108	3.43	541 <0.	002 610 .005 130 .001 130	0 1.61 0.09	98	0.042 0.027 <0.01	0.369 10.04 0.073 7.03 0.25 6.93	11900
MH-3 II/III Nov-07 5000 MH-3 II/III Nov-08 2200	0 210 167 0 921 101	0 1300 0 2200	720 8 220 3	30 <0.5		0.068 0.436		160 147 21 104		7.6 1.1 8.4 0.5	1 0.2 5 0.1	<0.01 <0.01	<0.01 <0.01	<0.001 <0.001	281 385	<3 0.025 0.05 0.011	0.01 0.05	4.1J 6.1	<0.01 2 0.02 1	262 1. 122 2	1.19 <0.0° 2.6 <0.0°	1 0.1 1 0.06	7.6	530 <0. 210 <0.	.001 137 .001 670	0 1.76 0.1 0 1.49 0.0	12 <0.1 06 <0.1	0.02 0.01	0.1 7.64 1.03 6.37	12300 6470
MH-3 II/III Nov-09 4440 MH-3 II/III Nov-10 1710 MH-3 II/III Dec-11 2100	0 926 719	0 2030 1 1940 1 1500	1	845 <2.0)	0.406 0.13 0.256		49 <40 58.7 435 68 105		10.5 0.58 2.57 0.96 4.76 1.1	6 0.25	5 <0.010	<0.010	<0.0010	342	0.071 0.032 0.026 0.0119 0.0196 0.0109	9 0.039		0.012 1	149 2.	1.85 <0.01 2.27 <0.01 1.7 0.003	10 0.064	2.57		0010 516	0 2.3 0.14 6 1.83 0.07 9 1.43 0.06	77 <0.10	1	0.608 6.57	1320 5100 5056
MH-3 II/III Nov-12 4100 MH-3 II/III Jun-14 3220	0 388 71.2 0 389 968	2 1540 770	455 4 ⁻ 574 7:	79 <2.0 31 <1.0		<0.1 0.040		80 <40 5640 146		10.0 1.07 11.8 0.10	0.3 06 0.154	<0.010 4 <0.001	<0.010 <0.002	<0.00090 <0.002	381 (303	0.0669 0.0178 0.031 0.018	8 0.011 3 <0.003	9.1 3 5.08	<0.010 1 <0.002 1	197 2. 154 1.	2.65 <0.01 1.44 <0.00	0.086 02 0.049	10	350 <0.0 294 <0.	0010 104 .002 688	0 2.05 0.19 3 1.94	97 <0.010	0.03 0.009	0.183 6.29 0.041 6.95	9170 >3999 16.6
MH-3 II/III Nov-14 3370 MH-3 II/III May-15 4510 MH-3 II/III Sep-15 4940	0 1410 121 0 232 176	729 3320 692	504 11 414 6	\$10 <5		0.045 0.715 0.072		1570 103 NR 378 1050 265		15.7 0.12 39.9 0.11 10.4 0.11	18 0.193 15 0.200	3 <0.001 0 <0.002	<0.002 <0.004	<0.002	548 445	0.047 0.012 0.054 0.020	2 <0.003 0 <0.006	6 1.060	<0.002 2 <0.004 2	256 4. 250 2.	2.53 < 0.00	0.056 04 0.096		354 <0. 389 <0. 466 <0.	.002 104 .004 114	0 2.33 0 2.21	<0.010 <0.020	0.017 0.019	0.013 12.95	7873 13.10 5 5923 14.58
MH-3 II/III Apr-16 4240 MH-3 II/III Oct-16 swere MH-3 II/III Apr-17 3000	e misplaced by the laboratory	2120		30 <1.00		0.505		4780 32 1740 4.7		24.2 0.12 13.1 1.04		4 <0.002		<0.004		0.038		0.219	<0.004 2 0.008 1					402 <0.			<0.020		0.048 7.25 0.459 6.93	
MH-3 II/III Sep-17 5720 MH-3 II/III May-18 Ins	0 456 175	0 1790		355 <1.00 355 <1.0		0.130		7900 21		10.0 0.15		4 <0.001							<0.008 1					460 <0.				0.009	 	
MH-3 II/III Oct-18 Ins MH-3 II/III May-19 1910 MH-3 II/III May-20 Ins MH-3 II/III lun 21 Ins	0 917 608	1670	179 2	<1.0	<1.0	0.312	1200	58 20.5	594	7.3 0.10	0.07	9 <0.001	<0.002	<0.001	296	0.024 0.006	0.009	1.73	0.004 1	111 1	.82 <0.00	0.02		178 <0.	.002 466	j 1.11	<0.010	0.006	0.062 6.69	4523 16.84
MH-3 II/III Jun-21 Ins MH-3 II/III Nov-21 951 MH-3 II/III May-22 Ins MH-3 II/III Oct-22 Ins	20 227	175	87.6	91 <0.14		0.05		28 116		1.1 0.88	6 0.11	7 <0.002	<0.004	<0.002	178	0.008 0.004	0.009	10.7	0.005 5	1.6 0.6	839 <0.00	0.015		65.5 <0.	.004 196	0.839	<0.020	0.006	<0.040 7.09	10.17
Minimum 951	20 13	80		4.2 0.04		0.003				0.45 0.10		9 0.0007		0.0002				5 0.219	0.004 5	51.6 0.		2 0.0104			002 196	6 0.751 0.01	156 0.003		0.011 6.29	
		7348 .3 1903.3		691 1.79 0.07 1.005			1442 2847 3 1321 2847			39.9 9.3 9.183 0.9331		2 0.0007 63 0.0007				0.098 0.033 0.048938 0.01697	6.89 67 0.45313	290 3 19.834	0.139 4 0.0255929 2	.70 2 225 2.48	20 0.023 84839 0.008	3 0.155 14 0.0781	10 3 5.817	1510 0.0 402.22 0.00	021 172 02033 891.3	0 5.07 0.2 33 2.023 0.10	2 0.06 057 0.0283		1.91 12.95 0.33834 7.4488	5 15700 16.84 39 8730 13.39
Analytical Sources: 1991 to 1997 Novamann 1998 to 2002 CAS Laboratories		Biochemical Oxygen De Chemical Oxygen Dema				ue measured in Labor	oratory.	from the Phase I lead	chate holding tank					not detected ab																
2003 Maxxam Analytical 2004 to 2005 AGAT Laboratories	DOC TDS	Dissolved Organic Carbo Total Dissolved Solids	on		3 2000 4 2004	0 Leachate sample w 4 to 2006 leachate sa	was collected from MH-1 samples were collected fr	16A due to insufficien from MH-15A due to i	nt flow at MH-1				* U	Semi quantitativ	ive only as analyzed f	for, but was not detect														
2005 to 2010 ALS Laboratories	TIAN	Tatal Kialdahi Nitra			J 5 T	C+ M C		4 2044 A	T				1	1-1	1.1									1	1				1	
2011 to 2012 Not reported 2012 to presen AGAT Laboratories	TOO	Total Kjeldahl Nitrogen Total Organic Carbon Total Suspended Solids			Ins Insuff		wer Use By-Law No. 46 of manhole to obtain a samp							The analyte was	as not detect	y identified; the associa cted above The reporte esent the actual limit of o	ed sample quantit	titation limit. Ho	owever, the reported	ed sample qu	quantitation limit is	approximate								

APPENDIX G: 2021 LABORATORY CERTIFICATES OF ANALYSIS

CLIENT NAME: GM BLUEPLAN

975 Wallace Avenue North Listowel, ON N4W1M6 (519) 291-9339

ATTENTION TO: Kate Charpontier

PROJECT: 318007

AGAT WORK ORDER: 22T900870

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Jun 08, 2022

PAGES (INCLUDING COVER): 14 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes		
l .		_

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GM BLUEPLAN SAMPLING SITE:St. Mary's Landfill

ATTENTION TO: Kate Charpontier SAMPLED BY:KC/CC

O. Reg.	153(511) - BTEX	(Water)
---------	---------	----------	---------

DATE RECEIVED: 2022-05-30								1	DATE REPORTE	ED: 2022-06-08	
	SA	AMPLE DES	CRIPTION:	МНВ	OW2-84	OW5-84	OW8B-91	OW9B-91	OW15-91	OW21-91	OW25-91
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
			SAMPLED:	2022-05-26 14:55	2022-05-26 13:25	2022-05-26 10:10	2022-05-26 14:00	2022-05-26 09:15	2022-05-26 11:20	2022-05-26 11:58	2022-05-26 10:54
Parameter	Unit	G/S	RDL	3911618	3911646	3911647	3911648	3911649	3911650	3911651	3911652
Benzene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Xylenes (Total)	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	106	107	116	101	106	106	110	110
4-Bromofluorobenzene	% Recovery	50-1	40	97	92	82	82	83	85	86	84
	SA	AMPLE DES	CRIPTION:	OW32-96	OW33-96	OW34-96	OW36				
		SAMI	PLE TYPE:	Water	Water	Water	Water				
		DATES	SAMPLED:	2022-05-26 12:34	2022-05-26 13:40	2022-05-26 13:51	2022-05-26 12:10				
Parameter	Unit	G/S	RDL	3911653	3911654	3911655	3911656				
Benzene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20				
Toluene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20				
Ethylbenzene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10				
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20				
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10				
Xylenes (Total)	μg/L		0.20	<0.20	<0.20	<0.20	<0.20				
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	109	107	104	106				
4-Bromofluorobenzene	% Recovery	50-1		83	82	92	81				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3911618-3911656 Results relate only to the items tested.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:St. Mary's Landfill

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GM BLUEPLAN - Groundwater Package

DATE RECEIVED: 2022-05-30									DATE REPORTE	ED: 2022-06-08	
		_	CRIPTION: PLE TYPE: SAMPLED:	MHB Water 2022-05-26 14:55		OW2-84 Water 2022-05-26 13:25		OW5-84 Water 2022-05-26 10:10	OW8B-91 Water 2022-05-26 14:00	OW9B-91 Water 2022-05-26 09:15	
Parameter	Unit	G/S	RDL	3911618	RDL	3911646	RDL	3911647	3911648	3911649	
Electrical Conductivity	μS/cm		2	1170	2	364	2	967	917	1070	
pH	pH Units		NA	7.69	NA	7.92	NA	7.79	7.81	7.60	
Alkalinity (as CaCO3)	mg/L		5	319	5	168	5	250	253	284	
Chloride	mg/L		0.12	130	0.10	8.46	0.12	59.3	7.77	131	
Nitrate as N	mg/L		0.05	< 0.05	0.05	0.20	0.05	< 0.05	0.29	<0.05	
Nitrite as N	mg/L		0.05	< 0.05	0.05	< 0.05	0.05	< 0.05	< 0.05	<0.05	
Sulphate	mg/L		0.10	126	0.10	24.5	0.10	189	257	77.7	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	469	0.5	129	0.5	429	407	390	
Ammonia as N	mg/L		0.02	0.24	0.02	< 0.02	0.02	0.15	< 0.02	0.19	
Lab Filtration DOC				2022/05/30		2022/05/30		2022/05/30	2022/05/30	2022/05/30	
Dissolved Organic Carbon	mg/L		0.5	5.0	0.5	0.9	0.5	1.1	1.5	2.4	
Lab Filtration Metals				2022/05/30		2022/05/30		2022/05/30	2022/05/30	2022/05/30	
Dissolved Calcium	mg/L		0.25	92.8	0.05	25.2	0.25	65.7	75.6	81.7	
Dissolved Magnesium	mg/L		0.25	57.6	0.05	16.1	0.25	64.4	53.0	45.2	
Dissolved Sodium	mg/L		0.25	56.6	0.05	22.0	0.25	40.2	38.4	76.4	
Dissolved Boron	mg/L		0.010	0.134	0.010	0.112	0.010	0.146	0.134	0.279	
Dissolved Iron	mg/L		0.010	0.013	0.010	0.012	0.010	< 0.010	<0.010	0.011	
Dissolved Manganese	mg/L		0.002	0.077	0.002	0.014	0.002	0.034	0.003	0.046	
Phenols	mg/L		0.001	0.061	0.001	0.002	0.001	0.002	0.046	0.092	

SAMPLING SITE:St. Mary's Landfill

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GM BLUEPLAN - Groundwater Package

DATE RECEIVED: 2022-05-30							D.	ATE REPORT	TED: 2022-06-08	
		SAMPLE DESCRIPTION:	OW15-91		OW21-91		OW25-91		OW32-96	OW33-96
		SAMPLE TYPE:	Water		Water		Water		Water	Water
		DATE SAMPLED:	2022-05-26 11:20		2022-05-26 11:58		2022-05-26 10:54		2022-05-26 12:34	2022-05-26 13:40
Parameter	Unit	G/S RDL	3911650	RDL	3911651	RDL	3911652	RDL	3911653	3911654
Electrical Conductivity	μS/cm	2	581	2	1280	2	660	2	631	576
рН	pH Units	NA	7.92	NA	7.88	NA	7.79	NA	7.86	7.94
Alkalinity (as CaCO3)	mg/L	5	232	5	257	5	285	5	231	220
Chloride	mg/L	0.10	32.7	0.12	194	0.10	9.28	0.10	62.9	42.6
Nitrate as N	mg/L	0.05	0.09	0.05	< 0.05	0.05	< 0.05	0.05	1.44	0.12
Nitrite as N	mg/L	0.05	< 0.05	0.05	< 0.05	0.05	< 0.05	0.05	< 0.05	< 0.05
Sulphate	mg/L	0.10	33.7	0.10	125	0.10	65.2	0.10	13.5	19.2
Hardness (as CaCO3) (Calculated)	mg/L	0.5	190	0.5	389	0.5	323	0.5	258	176
Ammonia as N	mg/L	0.02	<0.02	0.02	<0.02	0.02	0.03	0.02	< 0.02	0.03
Lab Filtration DOC			2022/05/30		2022/05/30		2022/05/30		2022/05/30	2022/05/30
Dissolved Organic Carbon	mg/L	0.5	1.2	0.5	3.0	0.5	1.5	0.5	0.8	1.2
Lab Filtration Metals			2022/05/30		2022/05/30		2022/05/30		2022/05/30	2022/05/30
Dissolved Calcium	mg/L	0.05	29.8	0.25	55.7	0.05	79.4	0.05	42.3	31.6
Dissolved Magnesium	mg/L	0.05	28.0	0.25	60.6	0.05	30.4	0.05	36.9	23.6
Dissolved Sodium	mg/L	0.05	44.7	0.25	117	0.05	11.9	0.05	20.3	40.5
Dissolved Boron	mg/L	0.010	0.423	0.010	0.120	0.010	0.067	0.010	0.094	0.174
Dissolved Iron	mg/L	0.010	0.013	0.010	<0.010	0.010	0.015	0.010	0.018	< 0.010
Dissolved Manganese	mg/L	0.002	0.039	0.002	<0.002	0.002	0.016	0.002	0.002	0.004
Phenols	mg/L	0.002	0.018	0.001	0.068	0.002	0.108	0.001	0.044	0.075

SAMPLING SITE:St. Mary's Landfill

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GM BLUEPLAN - Groundwater Package

			OM BLULI	LAN OID	unawater i t	ionago
DATE RECEIVED: 2022-05-30						DATE REPORTED: 2022-06-08
	5	SAMPLE DESCRIPTION: SAMPLE TYPE:	Water		OW36 Water	
		DATE SAMPLED:	13:51		2022-05-26 12:10	
Parameter	Unit	G/S RDL	3911655	RDL	3911656	
Electrical Conductivity	μS/cm	2	653	2	1280	
pH	pH Units	NA	7.91	NA	7.72	
Alkalinity (as CaCO3)	mg/L	5	231	5	274	
Chloride	mg/L	0.10	26.2	0.12	22.7	
Nitrate as N	mg/L	0.05	0.13	0.05	0.29	
Nitrite as N	mg/L	0.05	<0.05	0.05	<0.05	
Sulphate	mg/L	0.10	89.5	0.10	454	
Hardness (as CaCO3) (Calculated)	mg/L	0.5	281	0.5	617	
Ammonia as N	mg/L	0.02	< 0.02	0.02	< 0.02	
Lab Filtration DOC			2022/05/30		2022/05/30	
Dissolved Organic Carbon	mg/L	0.5	0.7	0.5	1.0	
Lab Filtration Metals			2022/05/30		2022/05/30	
Dissolved Calcium	mg/L	0.05	54.2	0.25	124	
Dissolved Magnesium	mg/L	0.05	35.3	0.25	74.6	
Dissolved Sodium	mg/L	0.05	20.1	0.25	51.0	
Dissolved Boron	mg/L	0.010	0.068	0.010	0.173	
Dissolved Iron	mg/L	0.010	0.024	0.010	0.033	
Dissolved Manganese	mg/L	0.002	0.003	0.002	0.004	
Phenols	mg/L	0.001	0.071	0.001	0.029	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

 ${\bf 3911618\text{-}3911656} \ \ \text{Metals analysis completed on a filtered sample}.$

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelly Amanjor Bhelly CHEMIST

SAMPLING SITE:St. Mary's Landfill

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GM BLUEPLAN - Residentials

DATE RECEIVED: 2022-05-30									DATE REPORTE	D: 2022-06-0	8
		_	CRIPTION: PLE TYPE: SAMPLED:	OW8A-91 Water 2022-05-26 14:30		PW1 Water 2022-05-26 16:15	PW3 Water 2022-05-26 16:20		PW4 Water 2022-05-26 16:00		PW5 Water 2022-05-26 16:25
Parameter	Unit	G/S	RDL	3910945	RDL	3911010	3911012	RDL	3911015	RDL	3911019
Hardness (as CaCO3) (Calculated)	mg/L		0.5	607	0.5	253	279	0.5	370	0.5	290
Alkalinity (as CaCO3)	mg/L		5	412	5	198	230	5	225	5	202
Chloride	mg/L		0.12	17.9	0.10	4.85	60.7	0.12	3.91	0.10	24.4
Nitrate as N	mg/L		0.05	< 0.05	0.05	< 0.05	0.11	0.05	0.47	0.05	< 0.05
Nitrite as N	mg/L		0.05	0.44	0.05	< 0.05	< 0.05	0.05	0.36	0.05	< 0.05
Phenols	mg/L		0.001	0.098	0.001	0.011	0.007	0.001	0.018	0.001	0.008
Ammonia as N	mg/L		0.02	<0.02	0.02	0.12	0.03	0.02	<0.02	0.02	<0.02
Total Calcium	mg/L		0.32	180	0.32	50.2	64.9	0.32	75.7	0.32	58.8
Total Magnesium	mg/L		0.34	38.3	0.34	31.1	28.4	0.34	44.0	0.34	34.8
Total Sodium	mg/L		0.45	30.1	0.45	29.4	34.1	0.45	34.8	0.45	31.3
Lab Filtration DOC				2022/05/30		2022/05/30	2022/05/30		2022/05/30		2022/05/30
Dissolved Organic Carbon	mg/L		0.5	5.1	0.5	1.0	1.0	0.5	1.6	0.5	1.1

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3910945-3911019 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelly Amanjor BHELA & CHEMIST

SAMPLING SITE:St. Mary's Landfill

Certificate of Analysis

AGAT WORK ORDER: 22T900870

PROJECT: 318007

ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GM BLUEPLAN - Surface Water Package

			•	JIVI DECE	LAIT - Ourie	ace water i	ickage				
DATE RECEIVED: 2022-05-30								D	ATE REPORT	ΓED: 2022-06-08	
		SAMPLE DES	CRIPTION: PLE TYPE:	SP1-10 Water	SP2-93 Water	SP3-93 Water		SP1B-94 Water		SP3A-94 Water	
		DATE	SAMPLED:	2022-05-26 13:45	2022-05-26 11:00	2022-05-26 09:30		2022-05-26 12:40		2022-05-26 11:30	
Parameter	Unit	G/S	RDL	3911093	3911536	3911537	RDL	3911538	RDL	3911539	
Electrical Conductivity	μS/cm		2	1130	1150	1160	2	1830	2	1750	
рН	pH Units		NA	8.05	7.95	7.91	NA	7.87	NA	7.90	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	183	189	180	0.5	596	0.5	356	
Alkalinity (as CaCO3)	mg/L		5	226	246	256	5	557	5	520	
Chloride	mg/L		0.12	178	176	180	0.24	241	0.24	240	
Nitrate as N	mg/L		0.05	0.81	0.48	0.46	0.07	< 0.07	0.07	<0.07	
Nitrite as N	mg/L		0.05	0.70	0.67	0.77	0.05	1.35	0.05	< 0.05	
Total Phosphorus	mg/L		0.02	0.06	0.08	0.10	0.02	0.39	0.02	0.20	
Phenols	mg/L		0.001	0.010	0.013	0.009	0.004	0.008	0.001	0.094	
Ammonia as N	mg/L		0.02	0.07	0.11	0.11	0.07	10.5	0.18	24.6	
Total Calcium	mg/L		0.32	46.7	47.9	46.2	0.32	143	0.32	63.3	
Total Magnesium	mg/L		0.34	16.2	16.9	15.7	0.34	57.9	0.34	48.0	
Total Sodium	mg/L		0.45	75.8	77.4	74.7	0.45	146	0.45	176	
Total Iron	mg/L		0.010	0.219	0.480	0.523	0.010	8.62	0.010	0.953	
Total Manganese	mg/L		0.002	0.034	0.065	0.092	0.002	0.532	0.002	0.069	
BOD (5)	mg/L		2	<2	<2	<2	2	44	2	17	
Turbidity	NTU		0.5	4.9	3.5	3.7	0.5	67.9	0.5	5.4	
Total Dissolved Solids	mg/L		10	600	626	612	10	1050	10	894	
Total Suspended Solids	mg/L		10	<10	<10	<10	10	158	10	13	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

3911093-3911539 Samples were received and analyzed beyond recommended hold time for Turbidity analysis.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhell & AMANDT BHELL & CHEMIST

Quality Assurance

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22T900870
ATTENTION TO: Kate Charpontier

SAMPLED BY:KC/CC

SAMPLING SITE:St. Mary's	Landilli						3	AWPLE	J B T: NC/C	C				
			Trac	e Or	gani	cs Ar	nalysi	is						
RPT Date: Jun 08, 2022				UPLICAT	Έ		REFEREN	NCE MATER	RIAL METHO	BLAN	K SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accepta Limits	ole Recover	1 1 11	eptable mits	Recovery	Lie	eptable mits
		ld					Value	Lower Up	per	Lower	Upper	1 -		Upper
O. Reg. 153(511) - BTEX (Water)													
Benzene	3911618	3911618	<0.20	< 0.20	NA	< 0.20	74%	50% 14	0% 92%	60%	130%	80%	50%	140%
Toluene	3911618	3911618	<0.20	<0.20	NA	< 0.20	100%	50% 14	0% 111%	60%	130%	87%	50%	140%
Ethylbenzene	3911618	3911618	<0.10	<0.10	NA	< 0.10	77%	50% 14	0% 94%	60%	130%	71%	50%	140%
m & p-Xylene	3911618	3911618	<0.20	<0.20	NA	< 0.20	90%	50% 14	0% 104%	60%	130%	78%	50%	140%
o-Xylene	3911618	3911618	<0.10	< 0.10	NA	< 0.10	95%	50% 14	0% 101%	60%	130%	82%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22T900870 ATTENTION TO: Kate Charpontier

PROJECT: 318007								ATTEN	NOIT	TO: Kat	e Cha	rponti	er		
SAMPLING SITE:St. Mary's	s Landfill						\$	SAMP	LED B	Y:KC/C	С				
				Wate	er Ar	alys	is								
RPT Date: Jun 08, 2022			Г	UPLICATI	=		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable nits	Recovery	1 1:-	eptable mits
								Lower	Upper		Lower	Upper		Lower	Upper
GM BLUEPLAN - Groundwate	r Package														
рН	3912307		6.92	7.05	1.9%	NA	101%	90%	110%	NA			NA		
Alkalinity (as CaCO3)	3912307		67	70	4.4%	< 5	98%	80%	120%	NA			NA		
Chloride	3911647	3911647	59.3	58.5	1.4%	< 0.10	95%	70%	130%	102%	80%	120%	107%	70%	130%
Nitrate as N	3911647	3911647	< 0.05	< 0.05	NA	< 0.05	95%	70%	130%	101%	80%	120%	102%	70%	130%
Nitrite as N	3911647	3911647	<0.05	<0.05	NA	< 0.05	96%	70%	130%	103%	80%	120%	105%	70%	130%
Sulphate	3911647	3911647	189	187	1.1%	< 0.10	95%	70%	130%	103%	80%	120%	NA	70%	130%
Ammonia as N	3927054		0.38	0.37	2.7%	< 0.02	102%	70%	130%	96%	80%	120%	98%	70%	130%
Dissolved Organic Carbon	3910945	3910945	5.1	5.0	2.0%	< 0.5	99%	90%	110%	97%	90%	110%	101%	80%	120%
Dissolved Calcium	3911646	3911646	25.2	25.0	0.8%	< 0.05	99%	70%	130%	99%	80%	120%	96%	70%	130%
Dissolved Magnesium	3911646	3911646	16.1	16.0	0.6%	< 0.05	102%	70%	130%	101%	80%	120%	98%	70%	130%
Dissolved Sodium	3911646	3911646	22.0	22.1	0.5%	< 0.05	102%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Boron	3911618	3911618	0.134	0.138	2.9%	< 0.010	100%	70%	130%	110%	80%	120%	115%	70%	130%
Dissolved Iron	3911618	3911618	0.013	< 0.010	NA	< 0.010	99%	70%	130%	99%	80%	120%	99%	70%	130%
Dissolved Manganese	3911618	3911618	0.077	0.066	15.4%	< 0.002	101%	70%	130%	106%	80%	120%	103%	70%	130%
Phenols	3907374		0.007	0.006	15.4%	< 0.001	104%	90%	110%	97%	90%	110%	98%	80%	120%
Comments: NA Signifies Not App Duplicate NA: results are under 5 Matrix spike NA: Spike level < na	X the RDL and				ts do not	apply and	are not ca	llculate	d.						
GM BLUEPLAN - Groundwate	r Package														
рН	3911649	3911649	7.60	7.68	1.0%	NA	101%	90%	110%	NA			NA		
Alkalinity (as CaCO3)	3911649	3911649	284	285	0.4%	< 5	94%	80%	120%	NA			NA		
Ammonia as N	3911652	3911652	0.03	0.03	NA	< 0.02	109%	70%	130%	97%	80%	120%	85%	70%	130%
Phenols	3911646	3911646	0.002	0.002	NA	< 0.001	105%	90%	110%	96%	90%	110%	101%	80%	120%
Comments: NA Signifies Not App Duplicate NA: results are under 5		will not be	calculated	l.											
GM BLUEPLAN - Surface Wat	er Package														
Chloride	3910945	3910945	17.9	17.5	2.3%	< 0.10	95%	70%	130%	102%	80%	120%	104%	70%	130%
Nitrate as N	3910945	3910945	<0.05	< 0.05	NA	< 0.05	98%	70%	130%	101%	80%	120%	101%	70%	130%
Nitrite as N	3910945	3910945	0.44	< 0.05	NA	< 0.05	99%	70%	130%	103%	80%	120%	99%	70%	130%
Total Phosphorus	3894262		0.03	0.03	NA	< 0.02	99%	70%	130%	98%	80%	120%	99%	70%	130%
Total Calcium	3910945	3910945	180	177	1.7%	< 0.10	95%	70%	130%	95%	80%	120%	97%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Total Magnesium

Total Manganese

Total Dissolved Solids

Total Suspended Solids

Total Sodium

Total Iron

BOD (5)

Turbidity

Page 9 of 14

70% 130%

70% 130%

70% 130%

70% 130%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

38.3

30.1

16.3

0.863

44

4.9

600

<10

3910945 3910945

3910945 3910945

3911538 3911538

3911093 3911093

3911093 3911093

3911537 3911537

3911093

3911093

38.3

29.5

0.859

46

4.9

612

<10

0.0%

2.0%

3.1%

0.5%

4.4%

1.2%

2.0%

NA

< 0.10

< 0.10

< 0.010

< 0.002

< 2

< 0.5

< 10

< 10

95%

96%

99%

99%

101%

99%

100%

98%

70% 130%

80% 120%

130%

130%

130%

125%

120%

120%

70%

70%

70%

75%

80%

80%

94%

96%

108%

105%

NA

NA

NA

NA

120%

120%

120%

120%

80%

80%

80%

80%

96%

97%

110%

102%

NA

NA

NA

NA

Quality Assurance

CLIENT NAME: GM BLUEPLAN

AGAT WORK ORDER: 22T900870 PROJECT: 318007 **ATTENTION TO: Kate Charpontier**

SAMPLING SITE:St. Mary's Landfill SAMPLED BY:KC/CC

	Water Analysis (Continued)														
RPT Date: Jun 08, 2022	E		REFEREN	ICE MAT	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper

GM BLUEPLAN - Surface Water Package

3911536 3911536 Total Phosphorus 0.08 0.08 NA < 0.02 104% 70% 130% 103% 80% 120% 99% 70% 130%

Comments: NA Signifies Not Applicable

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 14

Method Summary

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22T900870 **ATTENTION TO: Kate Charpontier**

SAMPLING SITE:St. Mary's Landfill	SAMPLED BY:KC/CC								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Benzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
m & p-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
o-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22T900870
ATTENTION TO: Kate Charpontier
SAMPLED BY:KC/CC

SAMPLING SITE:St. Mary's Landfill		SAMPLED BY:KC/CC							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE						
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE						
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE						
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Nitrite as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION						
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA						
Lab Filtration DOC	SR-78-9001		FILTRATION						
Dissolved Organic Carbon	INOR-93-6049	modified from SM 5310 B	SHIMADZU CARBON ANALYZER						
Lab Filtration Metals	SR-78-9001		FILTRATION						
Dissolved Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Dissolved Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA						
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA						
Total Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Total Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Total Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES						
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER						
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
BOD (5)	INOR-93-6006	Modified from SM 5210 B	DO METER						
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER						
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE						
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE						

Laboratory Use Only 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712 5100 Fax: 905 712.5122

STRIKE		Lat						W	ebearth, ag	atians	.com	Co	ooler Qua	antity:		1	l	arg	2	-
Chain of Custody Record	If this is a D	rinking Water s	ample, plea	se use Drink	ing Water Chain o	of Custody Form (po	table water	consum	ed by humar	ns)		Ar	rival Ten	nperatu	res:	1	1-8	120.	212	2.7
Report Information:		ineering	*	Reg (Please	Regulatory Requirements: (Please check all applicable boxes)							Custody Seal Intact: TYes TNO TN/A Notes: Bettled water					□N/A			
Address: 975 Wallace	Ave N		J		Regulation 153/04 Excess Soils R406 Sewer Use Sanitary Storm Table Indicate One Indicate One							Turnaround Time (TAT) Required:								
Phone: 519-291-9339) N4U — Fax:	N 1M6		-	Res/Park				Region Prov. Water Quality			Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)								
Reports to be sent to: Kate charponto	Soil Te	Soil Texture (Check One)			Objectives (PWQO) Other					☐ 3 E	Busines: ys	S		2 Busine Days	ess	□ Nex	t Business			
2. Email: Corrin cantwell		eplanic	a		Fine				Indicate One				OR	Date F	Requir	ed (Ru	sh Sur	charges	May App	ly):
Project Information:	outdets				this submissi			_	Guidelli te of An				=	Please	nrovi	de nric	or notific	cation fo	r rush TA	T
Project: 318007 Site Location: St. Mary's	Landfi	11		- 11		No] Yes		No								and stat		
Sampled By:	Lakari	11		- ا	165	S INO	L	1 168	<i>P</i>	140				ne Day'	analy	/sls, pl	ease c	ontact y	our AGA	ГСРМ
AGAT Quote #: 192120 Please note: If quotation number is n	PO:	e hilled full price for :	analysis.	Sam	ple Matrix Le	egend	000	0.	Reg 153			0. Re 558	-	eg 406		9				(Y/N)
Invoice Information:		To Same: Ye	1	B GW	Biota Ground Water		Filtered - Metals, Hg, CrVI, DOC		<u>a</u> .			n TCLP:	Rainwater Leach	Packag		Quote				entration
Company:				0	Oil		als, t		HWSB	<u> </u>		izatio	water Le	F1-F		35	2)	6		Conc
Contact:				P	Paint Soil		Met		<u>0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			acter	Sainw Sainw	terizz 3TEX,			+			真
Address:				SD	Sediment		ered	anics	CrVI, □ Hg, [Chai		arac als, E		3	2	5	(3)	o sno
Email:				sw	Surface Water		Field Filt	& Inorg	□ CrV	5		isposa	Soils Si	soils Ch	/SAR	tra	2	Ø		/ Hazard
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comment Clark Contract	nments/ Instructions	Y (N	Metals &	Metals - □ CrVI, □ Hg, □ BTEX, F1-F4 PHCs	PAHs	PCBs	Landfill Disposal Characterization TCLP.	Excess Soils SPLP Rainwater Leach SPLF: □ Metals □ Vocs □ SVocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Salt - EC/SAR	Rasidential	35	7	(2) (1) (4)	Potencially
0W 8A-91	05/26/22	2:30 8		GW			N									~			-0.0	TO IV-
PW I		4:15 敞							30					No			_			
PW3	15/1/184	4.20 8						0	11.4/1											
2W4		4:00 A)					35	365				4	HIS.				n-		and a
PW5		4:25 8		V			111	Şir_	10					200		4	1		Uana	set/
591-10		1.45		SW			- 10	000	100			q,		SA.			/		No.	1000
592-93		11 00 AM					197	OW	1,33			1		FW.			12		Chi	
503-93		9.30 8					1 111 100	0.00	0,000		031	To.		DE D		0.0003		10	00.0	CIDOR
SP18-94		12:40 8)				4 12	Live			1 2	33.0	<u> </u>	11 2/11		100		2	***	Sim
SP3A-94		11.30 PM		V			i i										Ψ			
MHB	V	2:55 AM		GW			V	5									N			
Samples Relinquished By (Print Name and Sign): Kate Charpontier & U	nt	Date 05/27	22 Time	00 AM	Anteon	Print Name and Signiful A Dasily	a	Wa	silva	>	Date		Time				15	12 MA	¥30	9120
Samples Relinquished By (PrintName and Sign):		Date	Time		Samples Received By	rint Name and Sign):					Date		Time				Page		of J	_
Samples Relinquished By (Print Name and Sign)		Date	Time		Samples Received By (Print Name and Sign1:					Date		Time			Nº: T	г <u>1</u>	32	032	2

Missis Ph: 905.712.51

5835 Coopers Avenue	Laboratory Use Only
sauga, Ontario L4Z 1Y2 100 Fax: 905.712.5122	Work Order #:
webearth agatlabs.com	Cooler Quantity:
umed by humans)	Arrival Temperatures:

Chain of Custody Pagerd	Labora		webearth agatlabs.	com	Cooler Quantity: Arrival Temperatures:					
Report Information: GM Birellan E		Regulatory Requirements (Please check all applicable boxes)			Custody Seal Intact:	□Yes □No □N/A				
Contact: Address: See Page Phone: Reports to be sent to: 1. Email:	0 0	Regulation 153/04 Excess S Table Indicate One Ind/Com Res/Park Regulati Soil Texture (check One) Coarse Excess S Table Indicate One	□ Sanitary □ Storm cate One □ Region		Turnaround Time (TAT) Required: Regular TAT S to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business Days Days Days Day					
Project Information: Project: Site Location: Sampled By:		Is this submission for a Record of Site Condition?	Report Guideline on Certificate of Analysis		OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM					
AGAT Quote #: Please note: If quotation number is not provided, client will b	e billed full price for analysis.	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CMI, DOC Metals & Inorganics Metals - CMI, DHg, DHWSB BTEX F1-F4 PHCs Analyze F4G if required Dives DNo FAHs		Landfill Disposal Characterization TG.P. Dival Disposal Characterization TG.P. Dival Divosa □ Java	J Q vote				
Sample Identification Date Sampled	Time # of Containors	Sample Comments/ Matrix Special Instructions	Field F Metais & Ino Metais & L Metais P1-F4 Analyze F4G PAHs	PCBs	Landfill Disposal T.D.P. Jm&J Dv Excess Soils SF SPL.P. D metals Excess Soils Ch pH, ICPMS Met	18)				
0W2-84 0W5-84 0W8B-91 0W9B-91 0W15-91 0W21-91 0W25-91 0W32-96 0W33-96 0W34-96 0W36	10:10 mm 2:00 mm 0:15 mm 11:20 mm 11:30 mm 10:54 mm 12:34 mm 12:34 mm 12:34 mm 12:34 mm 12:34 mm 12:34 mm	Samples Received By (Print Name and Sign		Date	Time					
Vate Charcontier + Untersamples Relinquished By (Prin Name and Sign):	05/27/22 9 Date Time	Samples Received By (Print Name and Sign	3 34-	Date	Time	Page of				

CLIENT NAME: GM BLUEPLAN

235 North Centre Rd Suite 103 London, ON N5X 4E7

(226) 377-0743

ATTENTION TO: Cuirin Cantwell

PROJECT: 318007

AGAT WORK ORDER: 22L954883

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Oct 20, 2022

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Metal Scan in Soil

DATE RECEIVED: 2022-10-07 DATE REPORTED: 2022-10-20

SAMPLE DESCRIPTION: COMPOST PILE

		_	LE TYPE: AMPLED:	Soil 2022-10-06 16:07	
Parameter	Unit	G/S	RDL	4391109	
Arsenic	μg/g		1	4	
Cadmium	μg/g		0.5	<0.5	
Chromium	μg/g		5	17	
Cobalt	μg/g		0.5	5.6	
Copper	μg/g		1.0	37.7	
Lead	μg/g		1	56	
Mercury	μg/g		0.10	<0.10	
Molybdenum	μg/g		0.5	1.0	
Nickel	μg/g		1	12	
Selenium	μg/g		0.8	<0.8	
Zinc	μg/g		5	100	

Comments: 4391109

RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED OF CHEMIST OF

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

BTEX - Water - mg/L (P & T - GC/MS)

				BIEX - W	vater - mg/L	. (P & I - GC	J/1819)				
DATE RECEIVED: 2022-10-07								ı	DATE REPORTI	ED: 2022-10-20	
		SAMPLE DES	CRIPTION:	OW2-84	OW5-84	OW8B-91	OW9B-91	OW15-91	OW21-91	OW25-91	OW32-96
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE	SAMPLED:	2022-10-06 11:41	2022-10-06 18:46	2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41
Parameter	Unit	G/S	RDL	4391061	4391065	4391077	4391078	4391079	4391080	4391081	4391082
Benzene	mg/L		0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002
Toluene	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	0.0003	<0.0002
Ethylbenzene	mg/L		0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001
m & p-Xylene	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
o-Xylene	mg/L		0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Total Xylenes	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	140	101	102	104	106	110	106	106	107
4-Bromofluorobenzene	%	50-	140	83.5	82.5	84.8	81.0	81.8	91.8	86.0	87.8
		SAMPLE DES	CRIPTION:	OW33-96	OW34-96	OW36	МНВ				
			PLE TYPE: SAMPLED:	Water 2022-10-06 11:41	Water 2022-10-06 11:41	Water 2022-10-06 11:41	Water 2022-10-06 11:41				
Parameter	Unit	G/S	RDL	4391083	4391084	4391085	4391086				
Benzene	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002				
Toluene	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002				
Ethylbenzene	mg/L		0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001				
m & p-Xylene	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002				
o-Xylene	mg/L		0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001				
Total Xylenes	mg/L		0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002				
Surrogate	Unit	Acceptab	ole Limits								
Toluene-d8	%	50-	140	104	102	99	106				
4-Bromofluorobenzene	%	50-	140	86.5	86.2	83.8	87.5				
1											

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4391061-4391086 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

Groundwater Package

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

				Gr	ounawate	г Раскаде					
DATE RECEIVED: 2022-10-07								D	ATE REPORT	ED: 2022-10-20	
		_	CRIPTION: PLE TYPE: SAMPLED:	OW2-84 Water 2022-10-06 11:41		OW5-84 Water 2022-10-06 18:46	OW8B-91 Water 2022-10-06 11:41	OW9B-91 Water 2022-10-06 11:41		OW15-91 Water 2022-10-06 11:41	
Parameter	Unit	G/S	RDL	4391061	RDL	4391065	4391077	4391078	RDL	4391079	
Alkalinity (as CaCO3)	mg/L		5	155	5	229	250	277	5	238	
Chloride	mg/L		0.10	7.84	0.12	46.4	7.84	116	0.10	47.1	
Nitrate as N	mg/L		0.05	0.54	0.05	<0.05	0.44	<0.05	0.05	<0.05	
Nitrite as N	mg/L		0.05	<0.05	0.05	<0.05	<0.05	<0.05	0.05	<0.05	
Sulphate	mg/L		0.10	22.3	0.10	135	276	91.3	0.10	41.2	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	117	0.5	365	411	355	0.5	224	
Ammonia as N	mg/L		0.02	< 0.02	0.02	0.20	< 0.02	0.13	0.02	0.06	
Phenols	mg/L		0.001	0.001	0.001	0.005	0.040	0.012	0.001	0.006	
Total Kjeldahl Nitrogen	mg/L		0.10	0.23	0.10	0.44	0.70	0.63	0.10	0.54	
Dissolved Organic Carbon	mg/L		0.5	1.0	0.5	1.1	3.3	2.9	0.5	2.6	
Dissolved Calcium	mg/L		0.05	23.0	0.05	59.8	79.9	73.0	0.05	36.7	
Dissolved Magnesium	mg/L		0.05	14.5	0.05	52.4	51.3	41.9	0.05	32.2	
Dissolved Potassium	mg/L		0.05	0.91	0.05	2.12	3.74	2.62	0.05	1.92	
Dissolved Sodium	mg/L		0.05	19.9	0.05	35.7	38.0	80.6	0.05	48.6	
Dissolved Boron	mg/L		0.010	0.101	0.010	0.147	0.134	0.327	0.010	0.437	
Dissolved Iron	mg/L		0.010	0.017	0.010	0.015	0.022	0.020	0.010	0.026	
Dissolved Manganese	mg/L		0.002	0.013	0.002	0.014	0.005	0.039	0.002	0.053	

Certified By:

Yris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Groundwater Package

							Γ	DATE REPORTE	D: 2022-10-20)
	SAMPLE DES	CRIPTION:	OW21-91		OW25-91	OW32-96	OW33-96	OW34-96		OW36
	SAM	PLE TYPE:	Water		Water	Water	Water	Water		Water
	DATE	SAMPLED:	2022-10-06 11:41		2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41		2022-10-06 11:41
Unit	G/S	RDL	4391080	RDL	4391081	4391082	4391083	4391084	RDL	4391085
mg/L		5	210	5	261	218	213	218	5	270
mg/L		0.12	206	0.10	9.13	69.7	41.0	22.6	0.12	25.0
mg/L		0.05	< 0.05	0.05	< 0.05	< 0.05	0.11	< 0.05	0.05	0.24
mg/L		0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05
mg/L		0.10	158	0.10	70.1	10.8	19.2	87.1	0.10	464
mg/L		0.5	292	0.5	325	285	199	295	0.5	638
mg/L		0.02	<0.02	0.02	0.06	0.11	0.10	<0.02	0.02	< 0.02
mg/L		0.001	0.028	0.001	0.089	0.005	0.011	0.052	0.001	0.005
mg/L		0.10	0.32	0.10	0.53	0.36	0.97	0.20	0.10	0.11
mg/L		0.5	2.8	0.5	2.0	1.0	2.1	0.9	0.5	1.2
mg/L		0.05	43.1	0.05	78.2	49.6	38.0	57.1	0.05	134
mg/L		0.05	44.8	0.05	31.4	39.1	25.4	37.0	0.05	73.7
mg/L		0.05	2.76	0.05	2.29	1.76	1.74	1.78	0.05	4.38
mg/L		0.05	90.4	0.05	14.0	32.7	46.0	24.2	0.05	52.4
mg/L		0.010	0.102	0.010	0.074	0.133	0.223	0.098	0.010	0.190
mg/L		0.010	0.020	0.010	0.016	0.019	0.013	0.017	0.010	0.030
mg/L		0.002	0.004	0.002	0.040	0.011	0.003	<0.002	0.002	0.002
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SAMIDATE S Unit G/S mg/L	mg/L 5 mg/L 0.12 mg/L 0.05 mg/L 0.10 mg/L 0.5 mg/L 0.02 mg/L 0.001 mg/L 0.10 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.010 mg/L 0.010 mg/L 0.010	SAMPLE TYPE: Water DATE SAMPLED: 2022-10-06 11:41 Unit G / S RDL 4391080 mg/L 5 210 mg/L 0.12 206 mg/L 0.05 <0.05	SAMPLE TYPE: Water DATE SAMPLED: 2022-10-06 11:41 Unit G / S RDL 4391080 RDL mg/L 5 210 5 mg/L 0.12 206 0.10 mg/L 0.05 <0.05	SAMPLE TYPE: DATE SAMPLED: 2022-10-06 11:41 Water 2022-10-06 11:41 Unit G / S RDL 4391080 RDL 4391081 mg/L 5 210 5 261 mg/L 0.12 206 0.10 9.13 mg/L 0.05 <0.05	SAMPLE TYPE: DATE SAMPLED: 2022-10-06 11:41 Water 2022-10-06 11:41 Water 2022-10-06 11:41 Water 11:41 Water 11:41 Water 11:41 Page 2022-10-06 11:41 2022-10-06 11:41 2022-10-06 11:41 11:41	SAMPLE DESCRIPTION: OW21-91 OW25-91 OW32-96 OW33-96 SAMPLE TYPE: Water Water Water Water Water DATE SAMPLED: 2022-10-06 2022-10-06 2022-10-06 2022-10-06 2022-10-06 11:41 11:41 11:41 11:41 11:41 11:41 Unit G / S RDL 4391080 RDL 4391081 4391082 4391083 mg/L 5 210 5 261 218 213 mg/L 0.12 206 0.10 9.13 69.7 41.0 mg/L 0.05 <0.05	SAMPLE DESCRIPTION: OW21-91 OW32-96 OW33-96 OW33-96 OW34-96 OW34	SAMPLE TYPE: Water Public Author Public 2022-10-06 11:41 2022-10-06 11:41 210-06 11:41 Author Public Public May 1082 4391083 4391084 RDL mg/L 0.12 206 0.10 9.13 69.7 41.0 22.6 0.12 mg/L 0.05 <0.05

Certified By:

Yrus Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Groundwater Package

			Gio	unuwater i ackage
DATE RECEIVED: 2022-10-07				DATE REPORTED: 2022-10-20
		SAMPLE DESCRIPTION:	МНВ	
		SAMPLE TYPE: DATE SAMPLED:	Water 2022-10-06	
		DATE SAMPLED.	11:41	
Parameter	Unit	G/S RDL	4391086	
Alkalinity (as CaCO3)	mg/L	5	300	
Chloride	mg/L	0.12	141	
Nitrate as N	mg/L	0.05	<0.05	
Nitrite as N	mg/L	0.05	<0.05	
Sulphate	mg/L	0.10	139	
Hardness (as CaCO3) (Calculated)	mg/L	0.5	455	
Ammonia as N	mg/L	0.02	0.17	
Phenols	mg/L	0.001	0.009	
Total Kjeldahl Nitrogen	mg/L	0.10	0.85	
Dissolved Organic Carbon	mg/L	0.5	5.4	
Dissolved Calcium	mg/L	0.05	90.7	
Dissolved Magnesium	mg/L	0.05	55.6	
Dissolved Potassium	mg/L	0.05	2.54	
Dissolved Sodium	mg/L	0.05	55.2	
Dissolved Boron	mg/L	0.010	0.131	
Dissolved Iron	mg/L	0.010	0.019	
Dissolved Manganese	mg/L	0.002	0.013	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 4391061-4391086 Metals and DOC analysis completed on a lab-filtered sample. Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Residential Groundwater Package

DATE RECEIVED: 2022-10-07									DATE REPORTED: 2022-10-20
		SAMPLE DES	CRIPTION:	PW1		PW3	PW4	PW5	
		SAMI	PLE TYPE:	Water		Water	Water	Water	
		DATE S	SAMPLED:	2022-10-06 11:41		2022-10-06 11:41	2022-10-06 11:41	2022-10-06 11:41	
Parameter	Unit	G/S	RDL	4391087	RDL	4391102	4391103	4391105	
Alkalinity (as CaCO3)	mg/L		5	189	5	219	256	193	
Chloride	mg/L		0.10	5.02	0.12	64.5	2.02	3.90	
Nitrate as N	mg/L		0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	
Nitrite as N	mg/L		0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	297	0.5	305	349	350	
Phenols	mg/L		0.001	0.002	0.001	0.003	0.002	0.001	
Dissolved Organic Carbon	mg/L		0.5	1.0	0.5	0.9	1.0	1.8	
Total Calcium	mg/L		0.20	59.1	0.20	68.4	76.2	72.2	
Total Magnesium	mg/L		0.10	36.4	0.10	32.7	38.5	41.3	
Total Sodium	mg/L		0.10	30.9	0.10	36.8	34.4	32.9	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4391087-4391105 DOC analysis completed on a lab-filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Yris Verastegui

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Surface Water Package

				31	illace water	rackaye
DATE RECEIVED: 2022-10-07						DATE REPORTED: 2022-10-20
		SAMPLE DES	CRIPTION: PLE TYPE:	SP1-10 Water	SP3-93 Water	
			DATE SAMPLED:		2022-10-06 11:41	
Parameter	Unit	G/S	RDL	4391106	4391108	
BOD (5)	mg/L		2	2	<2	
Total Dissolved Solids	mg/L		10	1080	940	
Fotal Suspended Solids	mg/L		10	21	31	
Furbidity	NTU		0.5	24.4	18.8	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	291	135	
Alkalinity (as CaCO3)	mg/L		5	211	212	
Chloride	mg/L		0.24	384	339	
Nitrate as N	mg/L		0.07	<0.07	0.46	
Nitrite as N	mg/L		0.05	< 0.05	< 0.05	
Total Phosphorus	mg/L		0.02	0.10	0.12	
Phenols	mg/L		0.001	0.003	0.001	
Ammonia as N	mg/L		0.02	0.13	<0.02	
Total Calcium	mg/L		0.20	87.8	30.5	
Total Magnesium	mg/L		0.10	17.5	14.2	
Total Sodium	mg/L		0.10	126	115	
Total Iron	mg/L		0.010	1.43	1.69	
Total Manganese	mg/L		0.002	0.090	0.153	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4391106-4391108 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

AGAT WORK ORDER: 22L954883

Quality Assurance

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007 ATTENTION TO: Cuirin Cantwell

SAMPLING SITE: SAMPLED BY:

Soil Analysis															
RPT Date: Oct 20, 2022			DUPLICATE				REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	1 1 1 1 1	ptable nits	Recovery	1 1 11	eptable mits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Metal Scan in Soil									•						
Arsenic	4414324		2	2	NA	< 1	120%	70%	130%	103%	80%	120%	105%	70%	130%
Cadmium	4414324		< 0.5	< 0.5	NA	< 0.5	90%	70%	130%	101%	80%	120%	105%	70%	130%
Chromium	4414324		8	9	NA	< 5	111%	70%	130%	103%	80%	120%	122%	70%	130%
Cobalt	4414324		2.0	2.2	NA	< 0.5	114%	70%	130%	115%	80%	120%	120%	70%	130%
Copper	4414324		5.2	6.1	15.9%	< 1.0	106%	70%	130%	105%	80%	120%	110%	70%	130%
Lead	4414324		4	4	NA	< 1	102%	70%	130%	104%	80%	120%	101%	70%	130%
Mercury	4414324		<0.10	<0.10	NA	< 0.10	99%	70%	130%	105%	80%	120%	103%	70%	130%
Molybdenum	4414324		< 0.5	< 0.5	NA	< 0.5	108%	70%	130%	99%	80%	120%	113%	70%	130%
Nickel	4414324		1	2	NA	< 1	111%	70%	130%	111%	80%	120%	115%	70%	130%
Selenium	4414324		<0.8	<0.8	NA	< 0.8	73%	70%	130%	101%	80%	120%	108%	70%	130%
Zinc	4414324		24	27	NA	< 5	106%	70%	130%	116%	80%	120%	111%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHARTERED OF CHEMIST O

Quality Assurance

CLIENT NAME: GM BLUEPLAN

AGAT WORK ORDER: 22L954883

PROJECT: 318007

ATTENTION TO: Cuirin Cantwell

SAMPLING SITE: SAMPLED BY:

· · · · · · · · · · · · · · · · · · ·			5 <u>22</u> 2													
	Trace Organics Analysis															
RPT Date: Oct 20, 2022	RPT Date: Oct 20, 2022 DUPLICATE				E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	1 1:-	ptable nits	
T / W / W E T E IX		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper	
BTEX - Water - mg/L (P & T - 0	GC/MS)															
Benzene	4391011		<0.0002	< 0.0002	NA	< 0.0002	105%	50%	140%	100%	60%	130%	88%	50%	140%	
Toluene	4391011		<0.0002	< 0.0002	NA	< 0.0002	103%	50%	140%	115%	60%	130%	106%	50%	140%	
Ethylbenzene	4391011		<0.0001	<0.0001	NA	< 0.0001	96%	50%	140%	117%	60%	130%	102%	50%	140%	
m & p-Xylene	4391011		<0.0002	< 0.0002	NA	< 0.0002	100%	50%	140%	113%	60%	130%	107%	50%	140%	
o-Xylene	4391011		<0.0001	< 0.0001	NA	< 0.0001	107%	50%	140%	111%	60%	130%	106%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Quality Assurance

CLIENT NAME: GM BLUEPLAN

AGAT WORK ORDER: 22L954883 PROJECT: 318007 **ATTENTION TO: Cuirin Cantwell**

SAMPLING SITE: SAMPLED BY:

			Wate	er Ar	nalys	is								
RPT Date: Oct 20, 2022		1	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
DADAMETED	Sampl	e D #4	D #0	RPD	Method Blank	Measured		ptable	D		eptable mits	D	1 1 10	ptable
PARAMETER	Batch Id	Dup #1	Dup #2	KPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
Groundwater Package		'												
Alkalinity (as CaCO3)	4389000	78	78	0.0%	< 5	83%	80%	120%						
Chloride	4391065 4391065	46.4	46.4	0.0%	< 0.10	96%	70%	130%	97%	80%	120%	100%	70%	130%
Nitrate as N	4391065 4391065	<0.05	< 0.05	NA	< 0.05	100%	70%	130%	102%	80%	120%	103%	70%	130%
Nitrite as N	4391065 4391065	<0.05	< 0.05	NA	< 0.05	100%	70%	130%	93%	80%	120%	110%	70%	130%
Sulphate	4391065 4391065	135	135	0.0%	< 0.10	99%	70%	130%	99%	80%	120%	NA	70%	130%
Ammonia as N	4389000	<0.02	<0.02	NA	< 0.02	100%	70%	130%	103%	80%	120%	96%	70%	130%
Phenols	4385599	< 0.001	< 0.001	NA	< 0.001	97%	90%	110%	93%	90%	110%	107%	80%	120%
Total Kjeldahl Nitrogen	4389270	6.45	6.44	0.2%	< 0.10	101%	70%	130%	98%	80%	120%	NA	70%	130%
Dissolved Organic Carbon	4391285	1.7	1.6	NA	< 0.5	95%	90%	110%	95%	90%	110%	89%	80%	120%
Dissolved Calcium	4391065 4391065	59.8	61.0	2.0%	< 0.05	103%	70%	130%	112%	80%	120%	104%	70%	130%
Dissolved Magnesium	4391065 4391065	52.4	52.6	0.4%	< 0.05	101%	70%	130%	106%	80%	120%	100%	70%	130%
Dissolved Potassium	4391065 4391065	2.12	2.03	4.3%	< 0.05	100%	70%	130%	110%	80%	120%	100%	70%	130%
Dissolved Sodium	4391065 4391065	35.7	34.3	4.0%	< 0.05	102%	70%	130%	109%	80%	120%	99%	70%	130%
Dissolved Boron	4391065 4391065	0.147	0.146	0.7%	< 0.010	98%	70%	130%	107%	80%	120%	101%	70%	130%
Dissolved Iron	4391065 4391065	0.015	0.017	NA	< 0.010	101%	70%	130%	108%	80%	120%	105%	70%	130%
Dissolved Manganese	4391065 4391065	0.014	0.017	19.4%	< 0.002	98%	70%	130%	102%	80%	120%	101%	70%	130%
Residential Groundwater Pack	kage													
Alkalinity (as CaCO3)	4391084 4391084	218	218	0.0%	< 5	88%	80%	120%						
Chloride	4391065 4391065	46.4	46.4	0.0%	< 0.10	96%	70%	130%	97%	80%	120%	100%	70%	130%
Nitrate as N	4391065 4391065	<0.05	< 0.05	NA	< 0.05	100%	70%	130%	102%	80%	120%	103%	70%	130%
Nitrite as N	4391065 4391065	<0.05	< 0.05	NA	< 0.05	100%	70%	130%	93%	80%	120%	110%	70%	130%
PhenoIs	4400397	<0.001	<0.001	NA	< 0.001	98%	90%	110%	95%	90%	110%	103%	80%	120%
Dissolved Organic Carbon	4391285	1.7	1.6	NA	< 0.5	95%	90%	110%	95%	90%	110%	89%	80%	120%
Total Calcium	4380447	559	575	2.8%	< 0.20	101%	70%	130%	100%	80%	120%	NA	70%	130%
Total Magnesium	4380447	122	122	0.0%	< 0.10	103%	70%	130%	107%	80%	120%	106%	70%	130%
Total Sodium	4380447	82.9	81.5	1.7%	< 0.10	97%	70%	130%	93%	80%	120%	102%	70%	130%
Surface Water Package														
BOD (5)	4391304	62	62	0.0%	< 2	101%	75%	125%						
Total Dissolved Solids	4391742	144	146	1.4%	< 10	98%	80%	120%						
Total Suspended Solids	4387675	<10	<10	NA	< 10	98%	80%	120%						
Turbidity	4388456	12000	12000	0.0%	< 0.5	108%	80%	120%						
Alkalinity (as CaCO3)	4391084 4391084		218	0.0%	< 5	88%		120%						
Chloride	4391065 4391065	46.4	46.4	0.0%	< 0.10	96%	70%	130%	97%	80%	120%	100%	70%	130%
Nitrate as N	4391065 4391065		< 0.05	NA	< 0.05	100%		130%	102%	80%		103%		130%
Nitrite as N	4391065 4391065		< 0.05	NA	< 0.05	100%		130%	93%		120%	110%		130%
Total Phosphorus	4391106 4391106		0.10	0.0%	< 0.02	95%		130%	97%	80%		100%		130%
Phenols	4400397	<0.001	<0.001	NA	< 0.001	98%		110%	95%		110%	103%		120%
Ammonia as N	4389000	<0.02	<0.02	NA	< 0.02	100%	70%	130%	103%	80%	120%	96%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 22L954883

Quality Assurance

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007 ATTENTION TO: Cuirin Cantwell

SAMPLING SITE: SAMPLED BY:

	Water Analysis (Continued)														
RPT Date: Oct 20, 2022			DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Limits		Acceptable Limits		Acceptable Limits		Recovery	Lie	ptable nits
TANAMETER		ld	·				Value	Lower	Upper	,	Lower	Upper			Upper
Total Calcium	4380447		559	575	2.8%	< 0.20	101%	70%	130%	100%	80%	120%	NA	70%	130%
Total Magnesium	4380447		122	122	0.0%	< 0.10	103%	70%	130%	107%	80%	120%	106%	70%	130%
Total Sodium	4380447		82.9	81.5	1.7%	< 0.10	97%	70%	130%	93%	80%	120%	102%	70%	130%
Total Iron	4380447		10.1	10.8	6.7%	< 0.010	103%	70%	130%	101%	80%	120%	NA	70%	130%
Total Manganese	4380447		0.190	0.213	11.4%	< 0.002	100%	70%	130%	100%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

Certified By:

Tris Verastegui

Method Summary

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22L954883

ATTENTION TO: Cuirin Cantwell

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED DT.								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis	'	-								
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium MET-93-6103		modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS							
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Trace Organics Analysis										
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Toluene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
Ethylbenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
m & p-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
Total Xylenes	VOL-91-5001	modified from EPA 5030B & EPA 8260D	CALCULATION							
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
4-Bromofluorobenzene VOL-91-5001 modified from EPA \$ 8260D		modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							

Method Summary

CLIENT NAME: GM BLUEPLAN

PROJECT: 318007

AGAT WORK ORDER: 22L954883

ATTENTION TO: Cuirin Cantwell

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis			•					
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE					
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION					
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA					
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA					
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA					
Dissolved Organic Carbon	INOR-93-6049	modified from SM 5310 B	SHIMADZU CARBON ANALYZER					
Dissolved Calcium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS					
Dissolved Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS					
Dissolved Potassium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS					
Dissolved Sodium	MET-93-6103	modified from EPA 6010D	ICP/MS					
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/MS					
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Total Calcium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS					
Total Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS					
Total Sodium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS					
BOD (5)	INOR-93-6006	Modified from SM 5210 B	DO METER					
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE					
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE					
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER					
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER					
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA					
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth.agatlabs.com

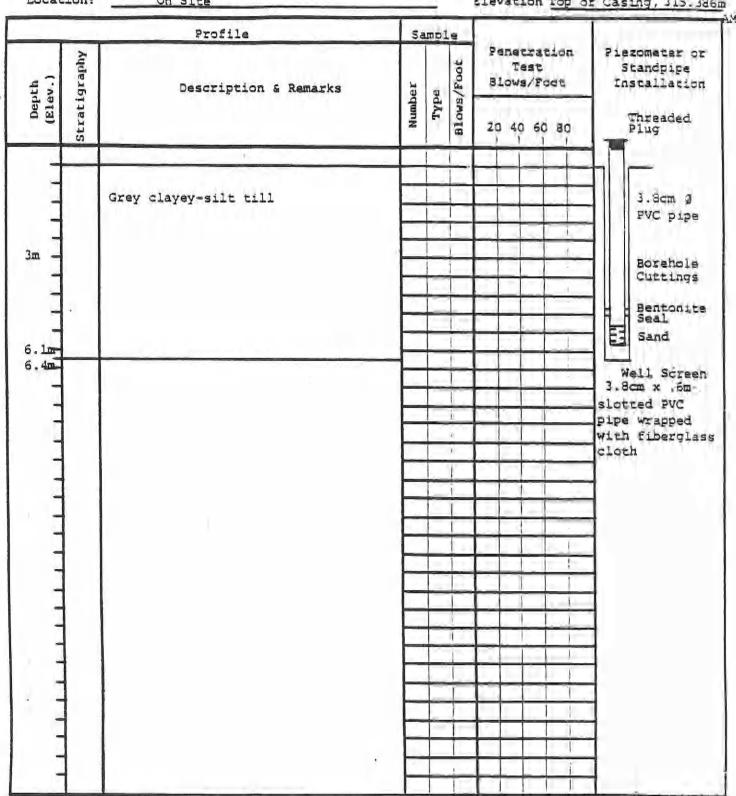
Laboratory Use Only Work Order #: Cooler Quantity:

Chain	of	Custody	Record

Chain of Custody Record If this is a Drinking Water sample, please				se use Drini	king Water Chain of Custody Form (potable w	ater consu	med by hun	nans)			Arrival Tem	nperat	ures:	-					
Report Information: Company:					gulatory Requirements: check all applicable boxes)						Custody Se	eal Int	act:	Yes	8	□No			
Contact: Address: Phone: Reports to be sent to: 1. Email:	Page Fax:	1		Ta	Excess Soils R406 Excess Soils R406 Excess Soils R406	Pr	Region ov. Water ojectives (, 1	F	Turnaroi Regular T Rush TAT	(Rush S	urcharges /	5 t	to 7 Busi Business	ness Da			
2. Email:			4-]Fine	-	Indicate 0	ne		-			Require	d (Rusi	h Surcha	ırges Ma	ay Apply):		
Project Information: Project: Site Location: Sampled By:	Page	1		Red	Is this submission for a Report Guideline on Certificate of Analysis Yes No Yes No						Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM								
AGAT Quote #: Please note: If quotation number is	PO: not provided, client	vill be billed full price fo	r analysis.	San	nple Matrix Legend	N, boc	0. Reg 153				O. Reg		g 406 ege	Sulphide □	Quote		ion (Y/N)		
Invoice Information: Company: Contact: Address: Email:	20 AU	Bill To Same: Y	es 🗹 No 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC		rt-r4 Phos		100	Landfill Disposal Characterization TCLP. TCLP: □M&I □VOCs □ABNs □B(a)p□p	Excess Soils SPLP Rainwater Leach SPLP: Metals VOCs Syocs		ly: Include Moisture □	Quote tential Gw	Quarte	Guote		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Z Metals	Metals -	PAHs	PCBs	VOC	Landfill TCLP: C	SPLP:	Excess pH, ICF	Corros	Resid	SW	8 Potentially		
MHB PWI PW3 PW4 PW5 SPI-10 SP3-93 Compost Pilo Samples Relinquished By (Print Name and Sign): Cuirin Continell Samples Relinquished By (Print Name and Sign): Cuirin Continell Compost Pilo	Oct 10/2	5:38 & 5:36 & 5:37 & 6	3	SW SW 47 AM	Samples Reserved By (Print Name and Sign):	Ja	un	a de la companya della Date	H T	Time	2	814		V V V Page 4		of D.			
Samples Refinquished By (Print Name and Sign):		Date	Time		Samples Received By (Print Name and Sign):				Date		Time		1	Nº: Ţ	- 1	36	051		

5835 Coopers Avenue Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use Only Work Order #: 22L954883 Mississauga, Ontario L4Z 1Y2


Report Information: Company: GM Blue Plan E Contact: Cuirin Canting		Ltd	(Pleas	gulatory Requirements: e check all applicable boxes)		Cower.	Ulao			10.1	tody Stal II es: 1/10		Dyes -	- We + C	No No	□N/A
Address: 235 North Contact: London, ON, Phone: 226 377 0743	tre Rd, S NSX 4E7		T	Res/Park	ate One		ary [] \$	Storm		Reg	ular TAT		5 to	Require		-
Phone: Reports to be sent to: 1. Email: 2. Email:		n.ca	Soil	Agriculture Texture (Check One) Coarse Fine	n 558	Other	ater Qua ves (PWC			Kusr	3 Busin Days OR Dat	ess	2 Bu Days		Next B Day May Apply):	Business :
Project Information: Project: 318007 Site Location: St. Mary's La	wdfill		Re	s this submission for a cord of Site Condition? Yes No	Ce	eport Gu rtificate	of Ana			Fo	*TAT is e	exclusive o	of weeken		r rush TAT tutory holida rour AGAT C	-177
AGAT Quote #: 192120 Please note: If quotation number			В	mple Matrix Legend Biota	, crvi, Doc	O. Re				TOLP:	P PCBs	Reg 406	Sulphide			(N)
Invoice Information: Company: Contact: Address: Email:	Barrier B	ill To Same: Yes 🗹	No GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg.	& Inorganics	1-F4 PHCs			sal Characterization	SPLP Rainwater Lo	aracteri als, BTE	Corrosivity: Include Moisture			lly Hazardr
Sample Identification	Date Sampled		# of Sample ntainers Matrix	Comments/ Special Instructions	Y/N	Metals	втех,	PAHS	NOC	Aroclors Landfill Dispo	TCLP: CIM& C Excess Soils	Excess pH, ICF	Corrosi			Potentia
OW 2 - 84 OW 5 - 84 OW 8B - 91 OW 9B - 91 OW 15 - 91	Oct 6 /28	11:41 PM 2:18 PM 3:20 PM 9:35 PM 9:58 PM	GW		N											
0W21-91 0W25-91		9:15								104	1 2 4					
0w 32 - 96 0w 33 - 96		11:27														
OW34 - 96		11:57 PM 3:00 AM	1													

APPENDIX H:
MONITORING WELL BOREHOLE AND TEST PIT LOGS

Job N Clien Boreh	ct Na o. t: ole T ion:	979-645				Geologist	leted /Engin	OW1-80 May 27, 1980 eer ESR f Casing, 316,946m
-		Profile	Sa	ump 1	Le	Sata		DATE OF THE REAL PROPERTY.
Depth (Elev.)	Stratigraphy	Description & Remarks	Number	Type	Blows/Foot	Fenetra Test Blows/F	oot	Piezometer or Standpipe Installation Threaded Plug
.118		Grey clayey-silt till	13	AS				3.3cm 2 PVC Pipe Borehola Cuttings Bentonite Seal Sand,
.600			15	SS	100			Well Screen 3.5cm x .6m slotted PVC pipe wrapped with fiberglass cloth

FIGURE 2.1 Conestoga - Rovers & Associates

Project Name: ST. MARYS LANDFILL SITE Job No. 979-645 OW2-80 Borehole No. Date Completed May 27, 1980 Geologist/Engineer ESR TOWN OF ST. MARYS Client: Borehole Type: Hollow Stem Auger Location: On Site Elevation Top of Casing, 315.386m Profile Sample

Project Name:	ST. MARYS LANDFILL SITE		HUF AV
Job No.	979-645	Borshole No.	OM3-80
Client:	TOWN OF ST. MARYS	Date Completed	May 27, 1980
Borehole Type:	Hollow Stem Auger	Geologist/Engine	er FSR
Location:		Elevation Top of	casing, 316.197m
			- A

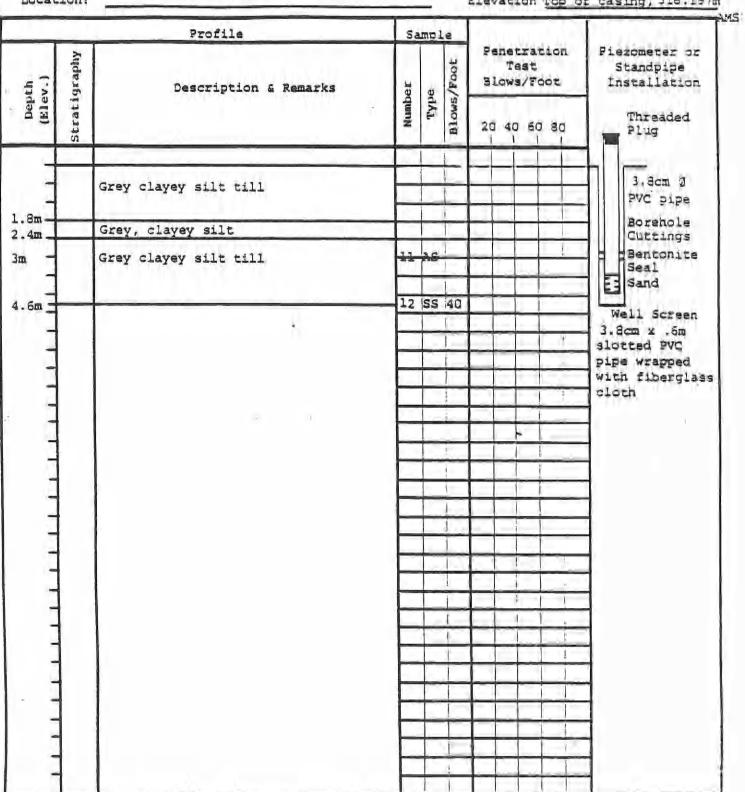
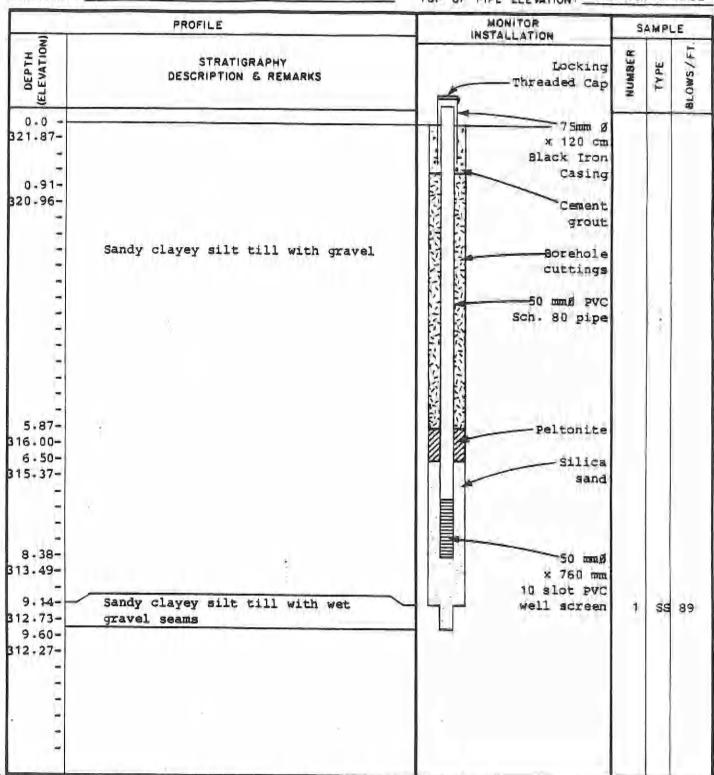


FIGURE 2.3 Conestaga - Rovers & Associates


ST. MARYS LANDFILL SITE Project Name: Job No. 979-645 TOWN OF ST. MARYS Client: _ Hollow Stem Auger Borehole Type:

OW4-80 Borehole No. Date Completed May 27, 1980 Geologist/Engineer ESR

Elevation Top of Casing, 316.126m


Location: Profile Sample Penetration Piezometer or Stratigraphy Blows/Foot Test Standpipe Depth Elev.) Blows/Foot Installation Description & Remarks Threaded Plug 20 40 60 80 Grey clayey silt till 3-8cm 3 1.2m -PVC Pipe Grey clayey silt SS 53 1.8m -Borehole Cuttings Grey clayey silt till 3m 6 | 35 31 55 31 6. Lm SSI 62 Bentonite Seal 9. lm Sand 10.2m = Rock Well Screen 3.8cm x .6m slotted PVC pipe wrapped with fiberglass cloth

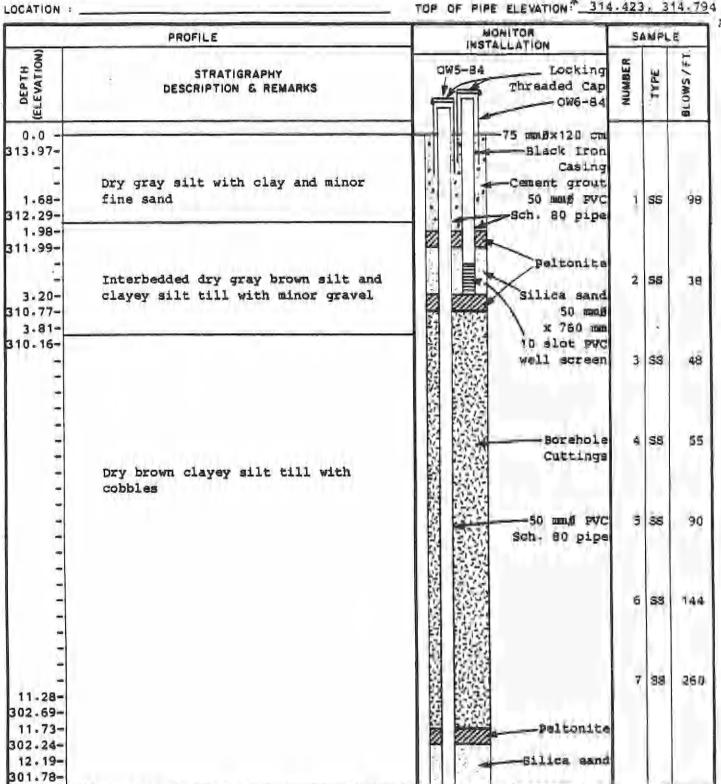
PROJECT NAME	ST. MARYS LANDFILL SITE	HOLE NO: OW1-84	
JOB Nº :	9-645	DATE COMPLETED: SEPTE	MBER 25, 1984
CLIENT :	TOWN OF ST. MARYS		PSB
HOLE TYPE :	HOLLOW STEM AUGER		321-87 m AMSL
LOCATION :		TOP OF PIPE ELEVATION	322.484 M AMSL

* REFER TO "WATER ELEVATIONS" TABLE FOR CURRENT REFERENCE ELEVATIONS

PROJECT NAME : ST. MARYS LANDFILL SITE	HOLE N9 OW2-84
JOB Nº : 9-645	DATE COMPLETED: SEPTEMBER 25, 1984
	GEOLOGIST/ENGINEER: PSB
HOLE TYPE : HOLLOW STEM AUGER	GROUND ELEVATION # 322.25 IN AMSE
LOCATION :	TOP OF PIPE ELEVATION # 322-841 m AMSL

PROJECT NAME : ST. MARYS LANDFILL SITE	HOLE Nº1 0W3-84, 0W4-84 - page 1 0
JOB N9: 9-645	DATE COMPLETED: SEPTEMBER 24, 1984
CLIENT : TOWN OF ST. MARYS	GEOLOGIST/ENGINEER :PSB
HOLE TYPE : HOLLOW STEM AUGER	GROUND ELEVATION,* 314.52 m AMSL
LOCATION :	TOP OF PIPE ELEVATION * 315.035, 315.364
LOCATION :	TOP OF PIPE ELEVATION:

	PROFILE	MONITOR INSTALLATION	\$	AMPL	É
DEPTH (ELEVATION)	STRATIGRAPHY DESCRIPTION & REMARKS	OW3-84 Locking Threaded Cap	NUMBER	TYPE	BLOWS /FT
0.0 - 14.52- - 1.45- 13.07- 1.83-		75 mm/s x 120 cm slack fron Casing 	1	SS	48
12.69- 3.05- 11.47- 3.66-	Interbedded moist to wet brown silty sand and clayey silt with minor gravel	Sch. 80 pipe Peltonits Silica Sand 50 mms		58	88
10.86-	Dry brown clayey silt till with	Casing Cement grout 50 mm# PVC Sch. 80 pipe Peltonits Silica Sand 50 mm# x 760 mm 10 slot PVC Well Screen	3	35	54
	minor gravel	cuttings	à	ss	64
		50 mm# PVC Sch. 80 pipe	Ś	SS	180
1 1 1 1	÷	1 154 6 50 534	6	SS	183
10.06- 04.46- 10.36- 04.16- 11.05-	Moist brown clayey silt till with sand and minor gravel	Peltonite	7	55	150
03-47- - 12-19- 02-33-	*	Silica sand	8	SS	102


* REFER TO "WATER ELEVATIONS" TABLE FOR CURRENT REFERENCE ELEVATIONS

₩ WATER FOUND V STATIC WATER LEVEL O GRAIN SIZE ANALYSIS

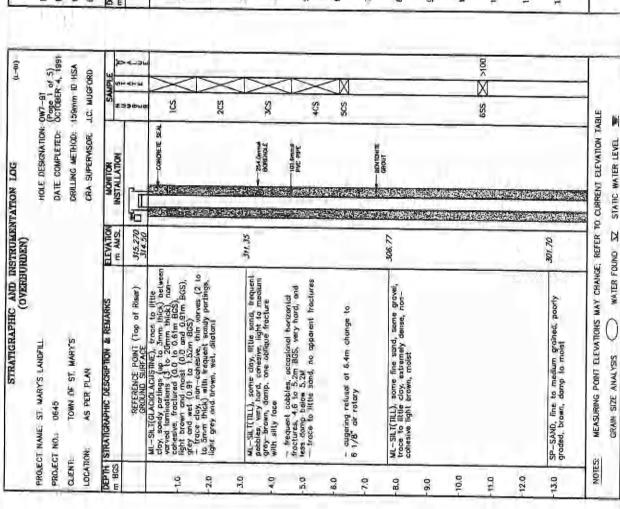
CLIENT :	9-645 TOWN OF ST. MARYS HOLLOW STEM AUGER PROFILE	DATE COMPLETED: SEPTEMBE GEOLOGIST/ENGINEER: PS GROUND ELEVATION:* 31 TOP OF PIPE ELEVATION:* 31 MONITOR	B 4 - 52 5 - 03	m A	MSL 15.36
DEPTH (ELEVATION)	STRATIGRAPHY DESCRIPTION & REMARKS	INSTALLATION	NUMBER	TYPE	BLOWS/FT.
12.19- 302.33- 13.11- 301.41- 13.87- 300.65-	Moist brown clayey silt till with sand and minor gravel Moist brown medium sand with fine sand and fine gravel Bedrock	50 mm# pvc Sch. 80 pipe Silica sand	9	SS	60
		x 760 mm 10 slot PVC Well screen	4		
1					
111111					

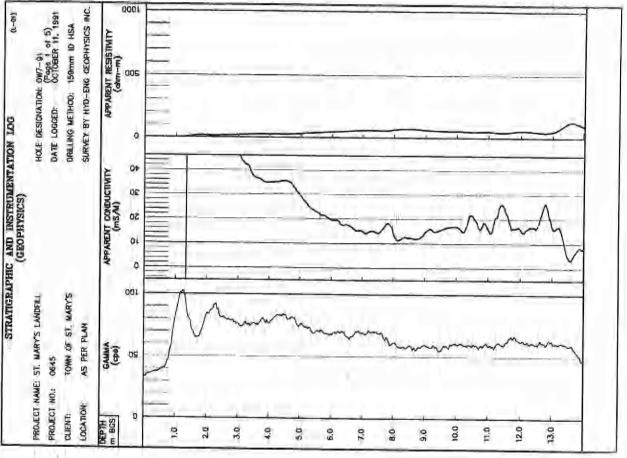
REFER TO "WATER ELEVATIONS" TABLE FOR CURRENT REFERENCE ELEVATIONS

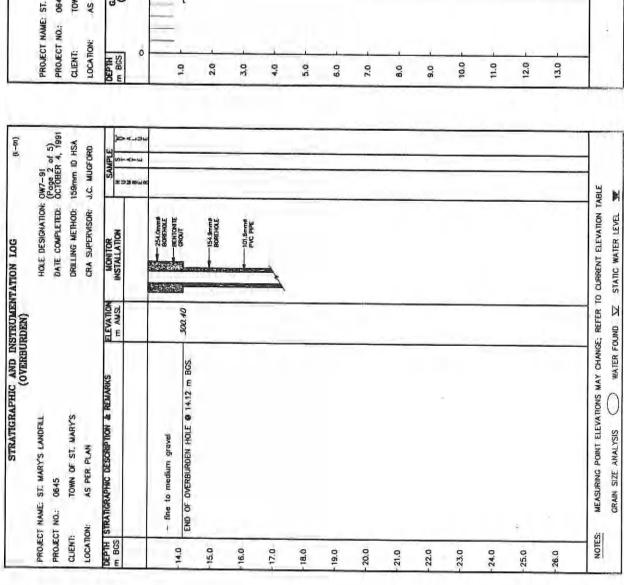
PROJECT NAME : ST- MARYS LANDFILL SI	TE HOLE NY: OW5-84, OW6-84 - page 1
JOB Nº: 9-645	DATE COMPLETED: SEPTEMBER 25, 1984
CLIENT : TOWN OF ST. MARYS	GEOLOGIST/ENGINEER PSB
HOLE TYPE : HOLLOW STEM AUGER	GROUND ELEVATION * 313.97 TR AMEL
LOCATION :	TOP OF PIPE ELEVATION * 314.423, 314.794

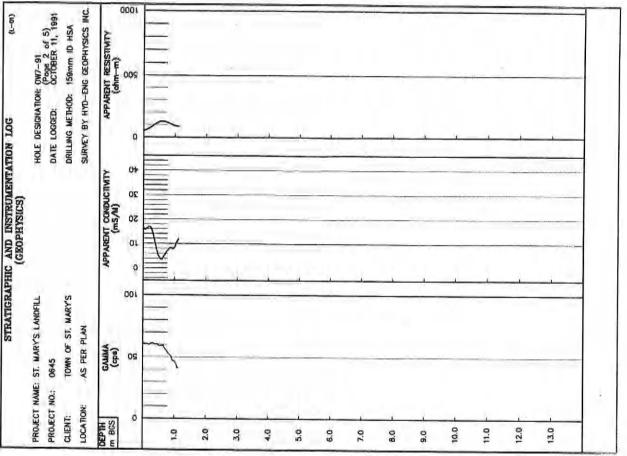
* REFER TO "WATER ELEVATIONS" TABLE FOR CURRENT REFERENCE ELEVATIONS

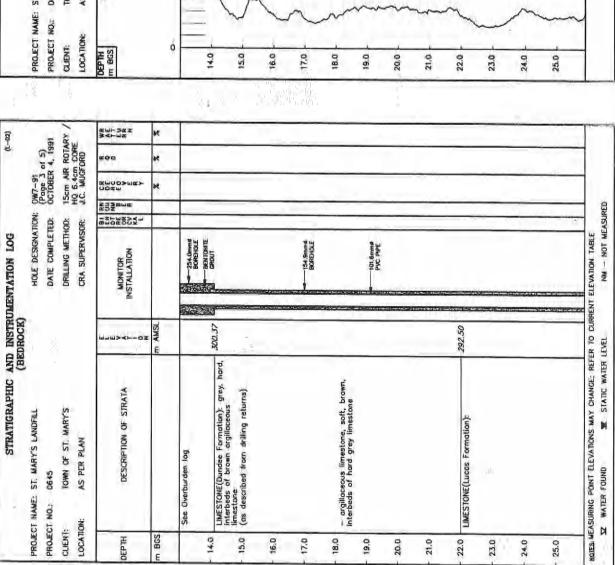
W WATER FOUND T STATIC WATER LEVEL O GRAIN SIZE ANALYSIS SS - SPLIT SPOON SAMPLE

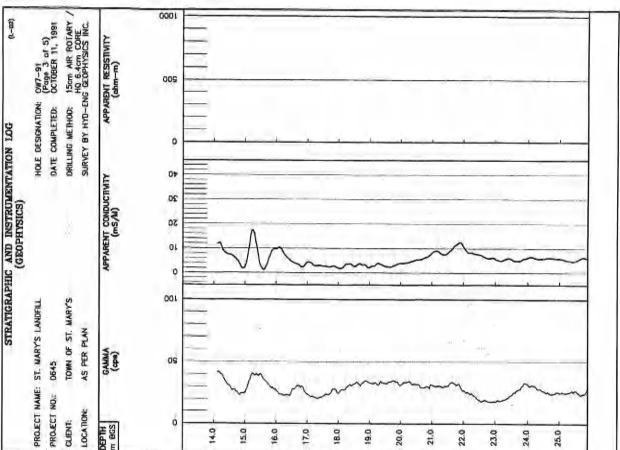

	PROFILE	MONITOR INSTALLATION	SAMPLE
LOCATION :		TOP OF PIPE ELEVATION # 31	4.423, 314.794 a
HOLE TYPE :	HOLLOW STEM AUGER		3.97 m AMSL
CLIENT :	TOWN OF ST. MARYS	GEOLOGIST/ENGINEER : PS	В
JOB N9 :	9-645	DATE COMPLETED: SEPTEMBE	R 25, 1984
PROJECT NAME	ST. MARYS LANDFILL SITE		6-84 - page 2 of

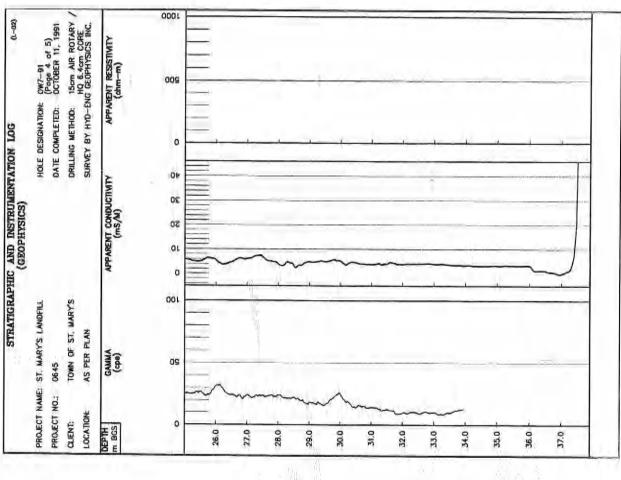

	PROFILE	MONITOR INSTALLATION	S	AMP	.ε
DEPTH (ELEVATION)	STRATIGRAPHY DESCRIPTION & REMARKS	INSTALLATION .	NUMBER	TYPE	BLOWS/FT.
12.19- 11.78- 12.80-	pry brown clayey silt till with cobbles	Silica sand		SS	165
- - 4.33- 9.64-	Wet brown coarse sand with gravel and medium sand	Collapsed Sand & gravel	9	SS	108
1.78- 0.19- -	Bedrock	x 760 mms 10 slot PVC Well screen		,	
1111					
	*				4
-					

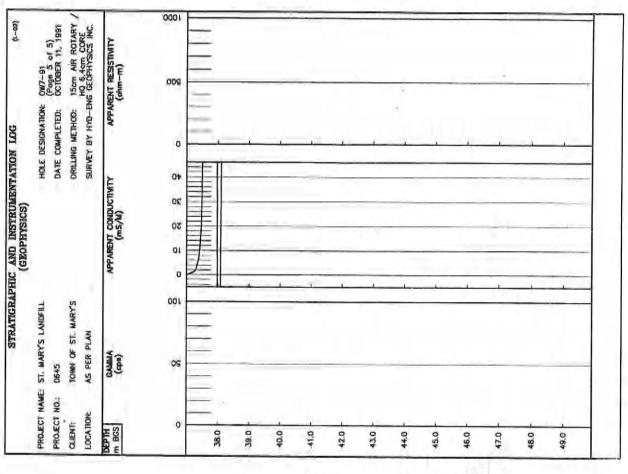

* REFER TO "WATER ELEVATIONS" TABLE FOR CURRENT REFERENCE ELEVATIONS

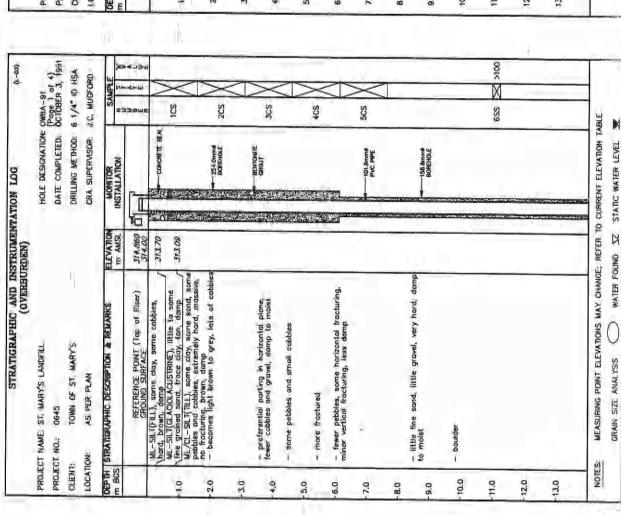

WATER FOUND STATIC WATER LEVEL O GRAIN SIZE ANALYSIS

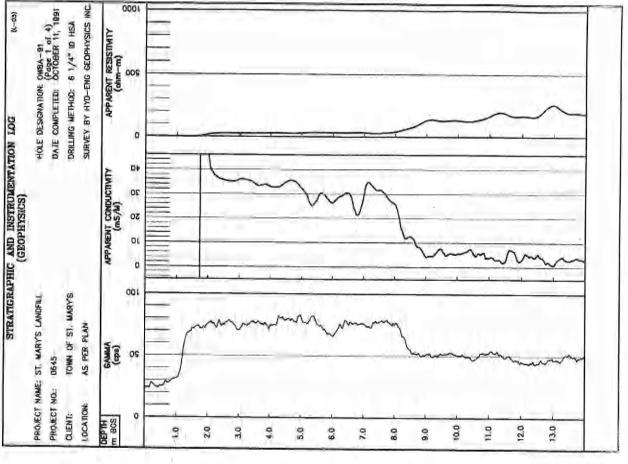

SS - SPLIT SPOON SAMPLE

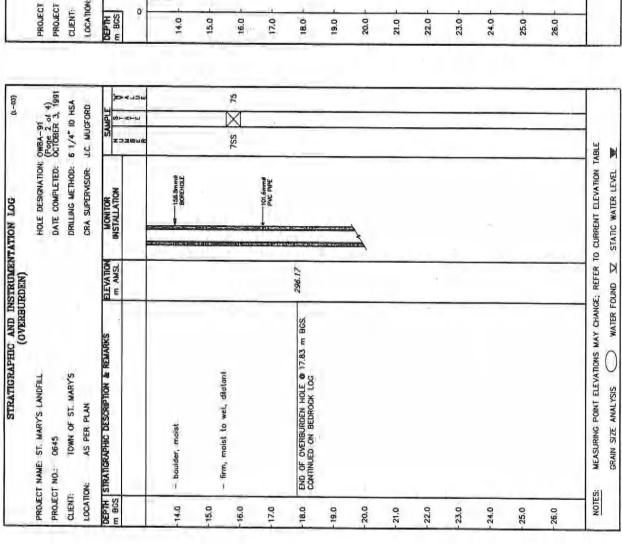


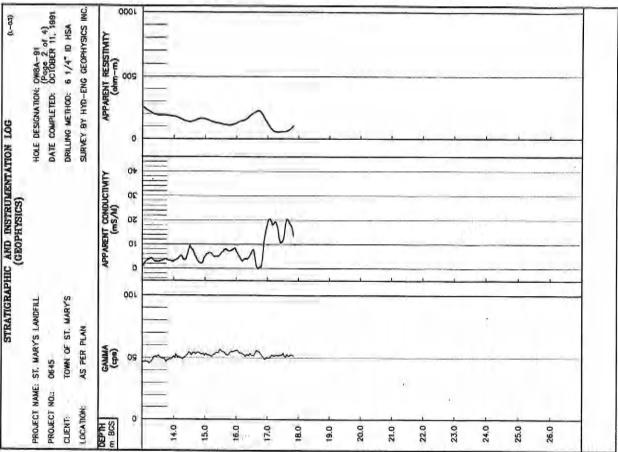


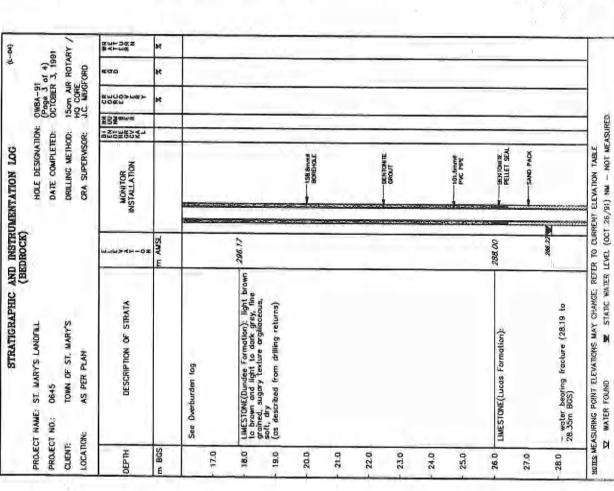


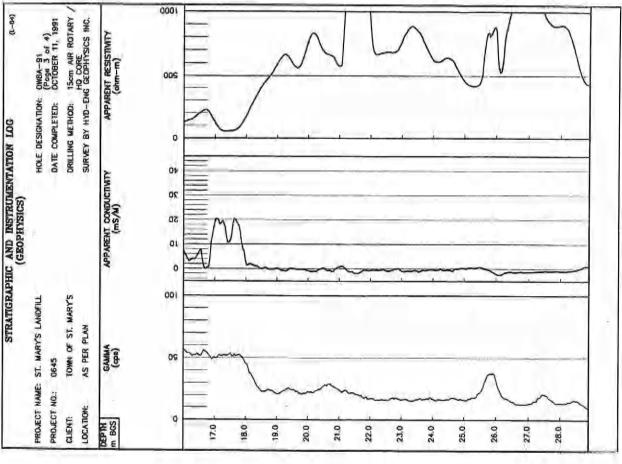


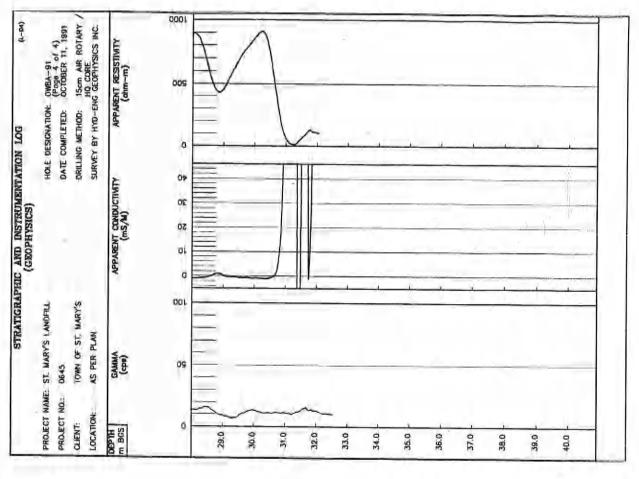

TOUR INTERIOR			27	THE DESIGNATION.	TINO.	CHILD	970		
PROJECT NO.:	PROJECT NO.: 0645		D. AQ	DATE COMPLETED:	9	56.5	(Page 4 of 5) OCTOBER 4, 1991	(5)	-
CLENT:	TOWN OF ST. MARY'S		DR	DRILLING METHOD:	90	150	15cm AIR ROTARY	ROTAL	≿
LOCATION:	AS PER PLAN		85	CRA SUPERWSOR	4	55.	AC. MUGFORD	200	
нт а эа	DESCRIPTION OF STRATA	W-W> <ox< td=""><td>MON</td><td>MONTOR. INSTALLATION</td><td>- ಕ್ಷಾಣ್ಣಕ್ಷ</td><td>X33mme</td><td>&m00>m&></td><td>eoc.</td><td>24-26x</td></ox<>	MON	MONTOR. INSTALLATION	- ಕ್ಷಾಣ್ಣಕ್ಷ	X33mme	&m00>m&>	eoc.	24-26x
BGS	E	AWS.				77	be.	PK.	94
26.0 - damp				GROUT		-			
27.0			**********	BOREHUZ BOREHUZ		_	-		
28.0			**********	- Mil Grand			-		
29.0		285.99		PVC ARE					
30.0 - few th	few thin shale interbeds		winese.						
31.0							-		
32.0						-	_		
33.0							-		
24.0									
35.0 granular	 light to oark brown, sugary to paraus/ granular texture, layered 				_	-	+		
- grey (grey (35.86 to 35.81m BGS)		1	-SAND PACK			100	ş	
1350,0	 grey with occasional brown layers, brown rock is medium to high ponosity, grey rock is law porosity, well fractured, some small wags and solution covities, stylolites 							2	




PROJECT NAME: ST. MARY'S LANDFILL PROJECT NO.: 0645 CLENT: TOWN OF ST. MARY'S LOCATION: AS PER PLAN					
		HOLE DESIGNATION:		16-91	
		DATE COMPLETED:	500	OCTOBER 4, 1991	991
		DRILLING METHOD:	15cn	AIR RO	ARY ,
		CRA SUPERMSOR:	54	J.C. MUGFORD	H.
DEPTH DESCRIPTION OF STRATA	M-1M>- <fqx< th=""><th>MONTOR RE INSTALLATION CV</th><th>±33mme</th><th>#400>m#></th><th>841-362 841-362</th></fqx<>	MONTOR RE INSTALLATION CV	±33mme	#400>m#>	841-362 841-362
m BGS	m AMS		-	be be	×
- froctured (@ 37.95m BGS)		PAG PAE		-	-
- froctured (© 38.40m BGS) - froctured (© 38.71m BGS) - for indicated by drilling rate)		MEL SCREW		-	
6	275.28	SCREEN DETAILS:		-	
40.0		Screened Interval: 37.49 to 39.01m BGS Length -1.5m			
41.0		Viameter - 10) bmm Slot ≠ 10 Vaterial - Stainless Steel Sand pock interval:			
45.0		33.83 to 39.22m BGS Material -# 3 Slice Sand			
43.0			-		
44.0					
45.0			-		
46.0			-		
47.0			-		
48.0				_	
49.0				_	







DESCRIPTION OF STRATA									
DESCRIPTION OF STRATA AS PER PLAN CRA SUPERNSOR: DOWN OF ST WARYS DESCRIPTION OF STRATA AS PER PLAN CRA SUPERNSOR: DESCRIPTION OF STRATA WONTON WISTALLATION WIS	PROJE	CT NAME:	ST. WARY'S LANDELL		HOLE DESIGNATIO		-VBMO	16	
DESCRIPTION OF STRATA. AS PER PLAN AS PER PLAN DESCRIPTION OF STRATA. IN MANGL. IN	PROJEC		0645		DATE COMPLETED		OCTOBE	R 3, 19	i
The control of the	CLENT		TOWN OF ST. MARY'S		DRILLING METHOD		15cm A	AR ROTA	RY /
DESCRIPTION OF STRATA Institution of the strata Stra	LOCATI	8	AS PER PLAN		CRA SUPERVISOR	as	LO CO	GFORD	
- light grey to brown, solution convites and ways (up to Zen thick) with coacie for mind, with coacie for a systolites and ways (up to Zen thick) with coacie for mind, with coacie for a systolites and systolites. - brown (Zel Sen Ca 23 tim BGS) - water bearing fracture (a 23 tim BGS) - water bearing fracture (a 24 tim BGS) - water bearing fracture (a 24 tim BGS) - water bearing fracture (a 32 tim BGS)	# 65		DESCRIPTION OF STRATA.	w <i>≥</i> w><>-o≠	7 31		LS 270 Parent	#0¢	タイトグル ステンスと
- light grey to brown, solution cavities and will say (see the Zorn thick) with cacite midling, styloilles - solutions and solutions and solutions are always (see the Zorn thick) with cacite will see the Zorn thick) with cacite will see the Zorn thick of Zorn thick) with the Solution of Zorn the Zor	SDB u						×	×	×
- water bearing fracture (# 28 BAm BCS) - water bearing fracture (# 28 BAm BCS) - water bearing fracture (# 28 BAm BCS) - water bearing fracture (# 30.30 BCS) - water bearing fracture (# 30.30 BCS) - water bearing fracture (# 30.30 BCS) - water bearing fracture (# 30.30 BCS) - water bearing fracture (# 30.30 BCS) - rough and open value bearing fracture (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 31.55 BCS) - rough and open value (# 32.55 BCS) - rough and	29.0	and was infiling.	rey to brown, solution covities (up to 2cm thick) with colorie styloliles (as 35 to 28,65m 865) (78,65m, 20)		SORBOCE SUB PACK	-			
- brown (29.7 to 27.2 0.0m BGS) - water bearing fracture (@ 30.32m BGS) - water bearing fracture (@ 30.32m BGS) - water bearing fracture (@ 30.32m BGS) - cough and open were bearing fracture (@ 30.34m BGS) - cough and open BGS) - cough and open BGS) - cough and open BGS) - cough and open BGS) - cough and open BGS) - cough and open BGS) - cough and open BGS) - water bearing fracture (@ 32.00m BGS) - wate	30.0	grey (bearing fracture (© 28.80m BCS) 29.11 to 29.72m BGS) bearing fracture (© 29.11m BGS)		101.6mm	-	_	\$	
- water bearing frother (® 30.33m BGS) - rough and open woter bearing froture (© 30.44m BGS) - porous (3.185 ta 31.55m BGS) - water bearing froture (® 31.69m BGS) - water bearing froture (® 32.00m BGS) - grey (32.00 to 32.35m BGS) END OF HOLE ® 32.36 m BGS.	31.0	water - water	(29.72 to 32.00m BGS) bearing fracture (29.72m BGS) (29.72 to 29.87m BGS) bearing fracture (9.30.02m BGS)		į	_		2	
- water boaring include (\$ 32.00m BGS) - grey (32.00 to 32.36m BGS) END OF HOLE (\$ 32.36 m BGS.)	320	(@ 30.94 porous	bearing frocture (@ 30,33m BGS) and open water bearing fracture m BGS) (31.89 to 31.55m BGS)	20164		-			
	33.0	- moter - grey (bearing fracture (# 51.69m BGS) bearing fracture (# 32.00m BGS) 32.00 to 32.36m BGS) (QLE # 32.36 m BGS.		SCREEN DETAILS: Screened Interval: 30.58 to 32.11m BGS	_			
	34.0				Length -1.5m Diameter -101.6mm Slot # 10				
36.0 37.0 34.0 39.0	35.0				Sand pack interval: 1 26.36 to 32.10m BGS Material - # 3 Silica Sand	6			
39.0 39.0	36.0								
39.0	37.0								
99.0	38.0								
004	39.0								-
	0.0								

(L-05)

PROJECT NAME: ST. MARY'S LANDFILL

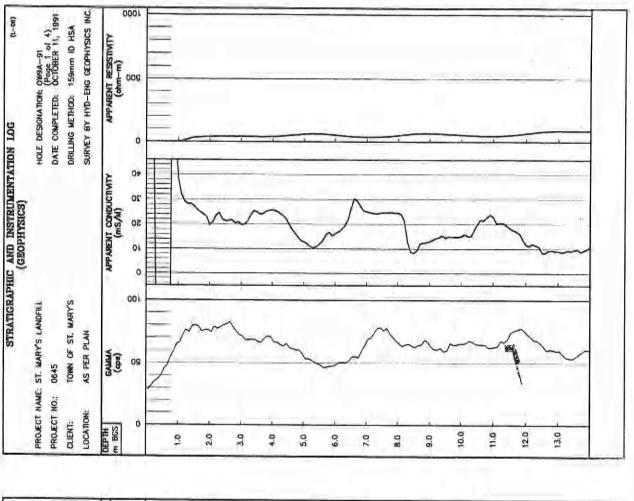
HOLE DESIGNATION: OW8B-91

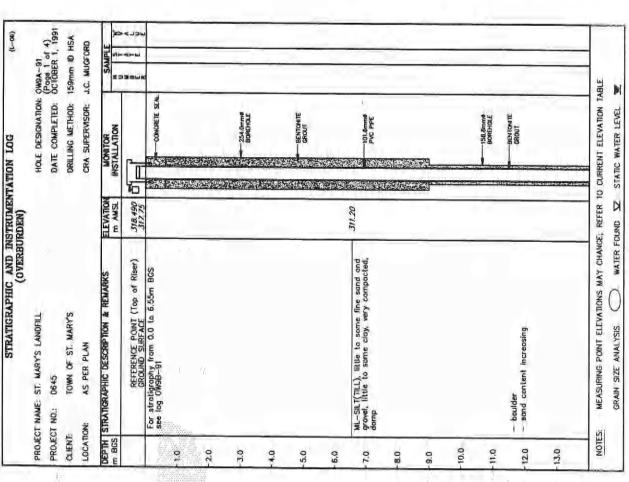
PROJECT NO .:

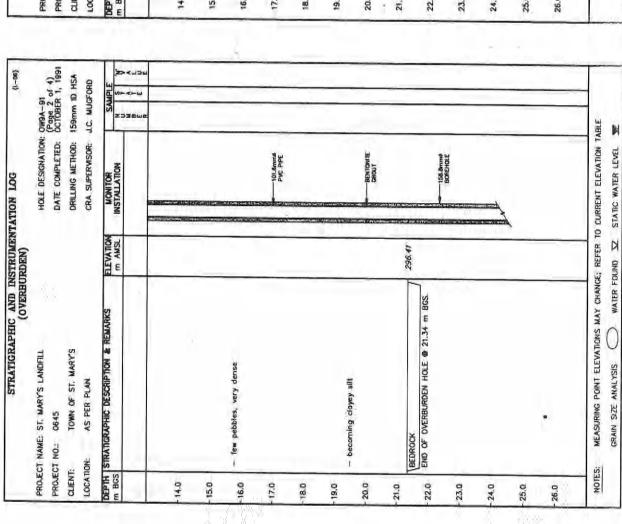
0645

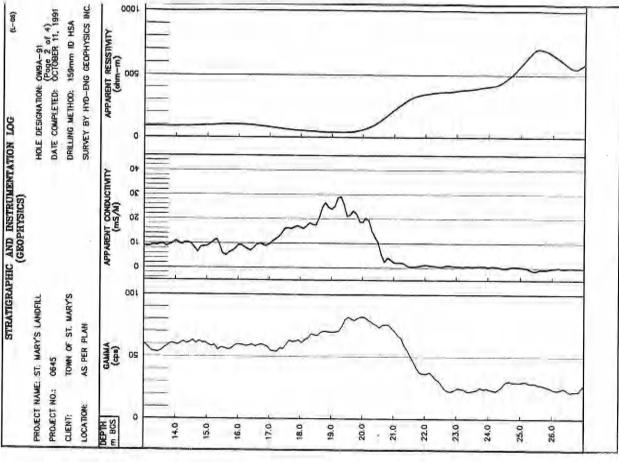
DATE COMPLETED: OCTOBER 4, 1991

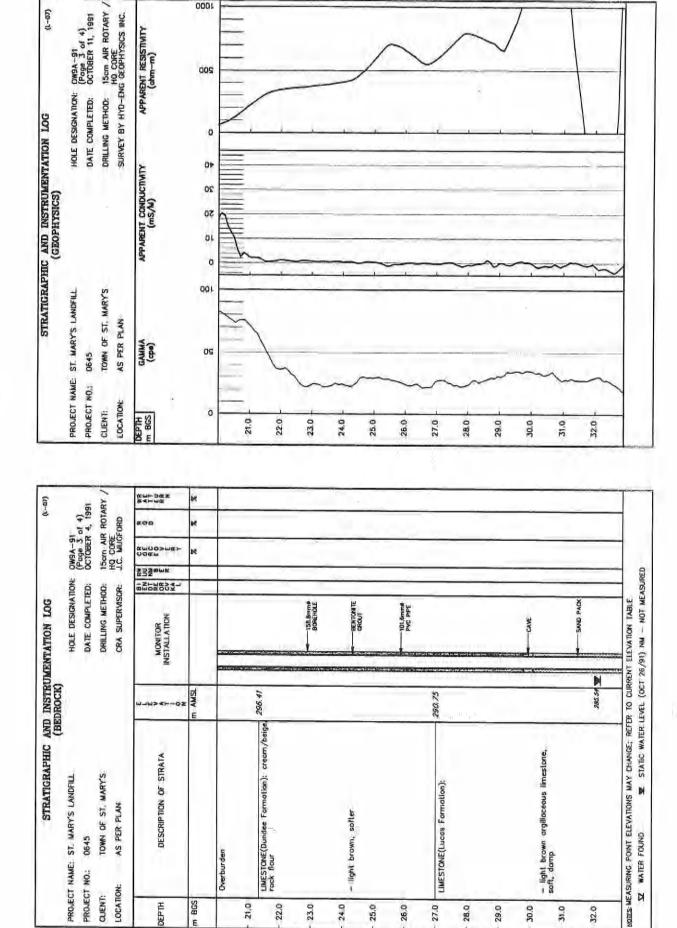
CLIENT:

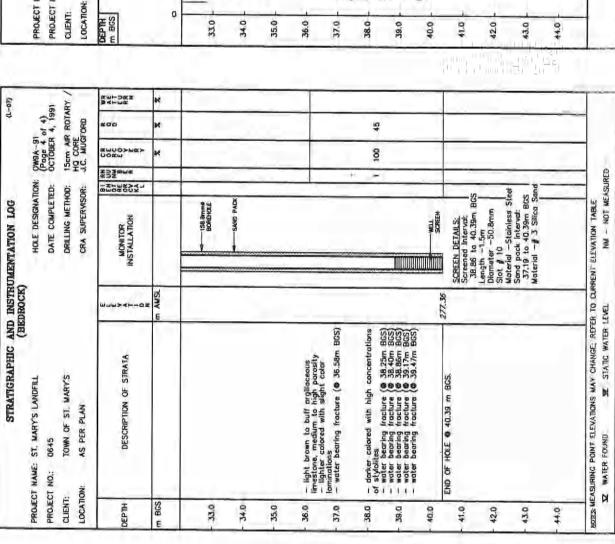

TOWN OF ST. MARY'S

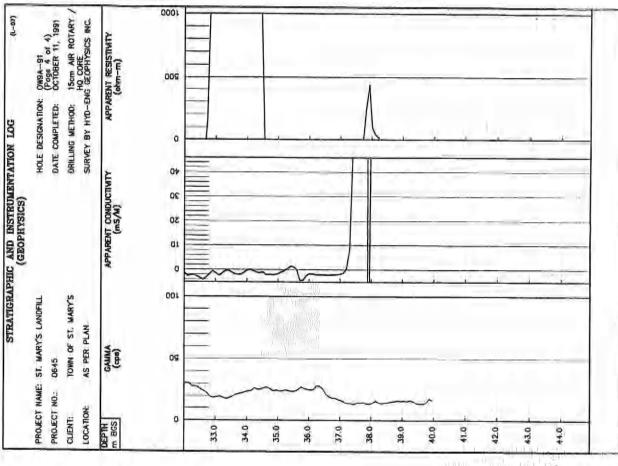

DRILLING METHOD: 15cm AIR ROTARY


LOCATION: AS PER PLAN


CRA SUPERVISOR: J.C. MUGFORD


m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	m AMSL	MONITOR INSTALLATION		MPLE	
11 565	REFERENCE POINT (Top of Riser) GROUND SURFACE	314.690 313.72	하 하 하 하	2morcz	STATE	JEL-> <z< th=""></z<>
	For stratigraphy from 0.0 to 5.49m BGS see log OW8A-91	3,3,72		- 8		
1.0			158.8mme			
2.0			CONCRETE SEAL 158.8mm BOREHOLE CEMENT/ BENTONITE GROUT 50.8mm PVC PIPE			
- 3.0			50.8mmd PVC PIPE		П	
4.0			BENTONITE PELLET SEAL			
5.0		W. 1994	SAND PACK			
6.0	ML/CL-SILT(TILL), some clay, some sand, some stone, very hard, medium grey to brown, very damp	308.23	WELL SCREEN	155	\boxtimes	>10
7.0	END OF HOLE @ 6.05 m BGS. NOTES: 1. At completion borehole remained dry.		SCREEN DETAILS: Screened Interval: 5.13 to 6.05m BGS Length -0.9m			
8.0			Diameter -50.8mm Slot # 10 Material -Stainless Steel Sand pack interval:			
9.0			3,96 to 6.05m BGS Material – # 3 Silico San	d		
10.0					Н	
11.0					М	
12.0						


1000


200

0

APPARENT RESISTINITY (ohm-m)

(1-07)

HOLE DESIGNATION: DW9B-91

PROJECT NO .: 0645

PROJECT NAME: ST. MARY'S LANDFILL

DATE COMPLETED: OCTOBER 1, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 108mm ID HSA

(L-08)

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE
BGS		m AMSL	INSTALLATION	NO.	S-1
	REFERENCE POINT (Top of Riser) GROUND SURFACE	318.580 317.74	하는,	9000	Ĕ
.0	ML/CL-SILT(TILL), some clay, some sond and small pebbles, rootlets, stiff to hard, well fractured, grey to brown, damp to moist — well developed sub-vertical fracture (0.3 to 0.45m BGS)		CONCRETE SEAL	ıcs	M
.0	hard, some pebbles (small to large), no obvious fracturing		90X2mm 90REHOLE BENTONITE GROUT	2CS	M
.0	1	314.13	50.8rrime PVC PIPE		\bigvee
0			BENTONITE PELLET SEAL	3CS	\bigwedge
.0	GM-GRAVEL, fine to medium grained, some	312.56	SAND PACK	4CS	X
0	sand, silt and stones, few cobbles, saturated ML-SILT(TILL), little to some fine grained	311.64	WELL SCREEN	5CS 6SS	X,
۵	sand and fine gravel, little clay, very compacted, damp to moist — trace fine grained sand, trace clay, extremely dense, non-plastic, laminated, light grey and brown, damp	311.19	SCREEN DETAILS: Screened Interval: 5.18 to 6.10m BGS	055	
o	END OF HOLE @ 6.55 m BGS.		Length ~0.9m Diameter ~50.8mm Slot # 10		
.0			Material -Stainless Steel Sand pack interval: 4.57 to 6.55m BGS Material -# 3 Silica San		П
0.0			Alexandra America		Н
1.0					
2.0					
3.0					

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND V STATIC WATER LEVEL V (OCT 26, 1991)

(L-14)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: OW15-91

PROJECT NO .: 0645

DATE COMPLETED: OCTOBER 21, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 108mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

		ELEVATION		SA	MPLE	
BGS		m AMSL	INSTALLATION	Z U	1	
	REFERENCE POINT (Top of Riser) GROUND SURFACE	318.670 317.82	· -	20macz	Ť E	
	ML/CL-SILT(TILL), some clay and sand, damp to moist		CONCRETE SEAL			
.0	*				П	
0.0			CONCRETE SEAL 203.2mms BOREHOLE BENTONITE GROUT 50,8mms PVC PIPE			
5.0	ML-SILT(TILL), some clay and sand, trace	314,77	50,8mme PVC PIPE	74		
	gravel, slightly layered, firm, light brown, damp to moist	314.13	BENTONITE PELLET SEAL	(CS) (3.5 -	M	
4.0	ML/CL-SILT and CLAY(GLACIOLACUSTRINE), trace gravel, little very fine sand, layered, tan, moist	313.25		4.6m)	\triangle	
5.0	SW/GW-SAND and GRAVEL, medium to coarse, some cobbles, salt and pepper color, saturated		SAND PACK WELL SCREEN	(4.6 T	X	
5.0	ML-SILT(TILL), some clay and sand, cobbles, dense, light brown, moist	312.03 311.62	BENTONITE PELLET SEAL	3CS) 4CS	$\stackrel{X}{\supseteq}$	
7.0	END OF HOLE @ 6.20 m BGS.		SCREEN DETAILS: Screened Interval: 4.57 to 5.49m BGS			
3.0			Length -0.9m Diameter -50.8mm			
5.0			Slat # 10 Material -Stainless Steel Sand pack interval:			
9.0			3.91 to 5.49m BCS Material -# 3 Silico Sano			
0.0						
11.0						
2.0						
2.0						
13.0					1 1	

ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS .

WATER FOUND X STATIC WATER LEVEL Y

(L-15)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO.: 0645

TOWN OF ST. MARY'S

LOCATION:

CLIENT:

AS PER PLAN

HOLE DESIGNATION: OW17-91

DATE COMPLETED: NOVEMBER 16, 1991

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

EPTH n BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	m AMSL	MONITOR INSTALLATION		MPLE	
003	REFERENCE ELEVATION (Top of Riser) GROUND SURFACE	318.39 317.39	THE STALLAND	BUBECZ	ATE	ACT > 62
1.0	ML/CL-SILT(TILL), some clay, little sand, little gravel, few cobbles, very stiff, grey, damp - very cobbly		CONCRETE SEAL 50.8mmd PVC PIPE BENTONITE GROUT BENTONITE PELLET SEAL	10S) 2CS	X	
3.0	MI /SM SII T and SAND wary fine agained	314.26 314.04	190.5mme BOREHOLE	355	X	26
0.0	ML/SM-SILT and SAND, very fine grained, [\compact, brown, saturated] SW-SAND, little fine gravel, coarse grained, well graded, compact, brown, saturated	313.73	190.5rnme BOREHOLE SAND PACK WELL SCREEN	455		20
0.0	ML/CL-SILT(TILL), same clay, little sand and gravel, stiff, grey, moist - sand and gravel seams, wet (4.88 to 4.98m BGS and 5.08 to 5.13m BGS)		SAND PACK WELL SCREEN	555	X	4
.0	ML-SILT(TILL), some sand, little to some clay, little gravel, very hard, light brown, damp — sand seam, wet (5.49 to 5.59m BGS)	311.90		6SS 7SS 8SS		5
.0				955	$\hat{\mathbb{X}}$	5
.0			BENTONITE PELLET SEAL	1055	×	>5
.0		n Lord		1155	\triangleright	>1
0.0	END OF HOLE @ 9.45 m BGS.	307.94	SCREEN DETAILS. Screened Interval: 2.74 to 5.79m BGS Langth - 3.0m Diameter - 50.8mm Slot # 10	1133	\triangle	3)
2.0			Material -PVC Sand pack interval: 2.34 to 6.05m BGS Material -# 2 Filter			
3.0			The state of the s			

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND

STATIC WATER LEVEL

(NOV 22, 1991;

0-201

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .: CLIENT:

0645

TOWN OF ST. MARY'S

LOCATION:

GRAIN SIZE ANALYSIS

AS PER PLAN

HOLE DESIGNATION: 0W21-91

DATE COMPLETED: DECEMBER 9, 1991

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SA	MPLE	
n BGS	and the second of the second of the second	m AMSL	INSTALLATION	8	S	A.
	REFERENCE POINT (Top of Riser) GROUND SURFACE	320.760 319.99	리큐	30wR	AT E	ACTS
	ML—SILT(TILL), little to same clay and sand, trace gravel, damp	7	CONCRETE SEAL			
1,0	A CONTRACTOR OF THE CONTRACTOR				Ш	
	- hard, maist to wet		50.8mme			
2.0	- damp	317.53	PVC PIPE			
	- damp	-11/4	BENTONITE			
3.0			GROUT -			
4.0			190.5mme BOREHOLE			
14.5	- very hard, damp		BOKEAGE		بني	
5.0	100000000000000000000000000000000000000		BENTONITE	155	\boxtimes	68
	ML/CL-SILT and CLAY (GLACIOLACUSTRINE), little sand and fine gravel, damp	314.61	PELLET SEAL	255	X	71
6.0	- little to some clay and fine sand, extremely dense, non-cohesive, tan, damp, layered			388		>10
7.0	- moist - some sand and clay, little fine gravel,	20202	SAND PACK	455	X	93
7.0	very hard, brown, damp ML-SILT and SAND(TILL), little clay, little	312.92		5SS	\boxtimes	>10
8.0	gravel, extremely hard, light brown to grey, damp to maist	312.29	SCREEN DETAILS:	1		
	END OF HOLE @ 7.70 m BGS.		Screened Interval: 6.17 to 7.70m BGS			
9.0			Length -1.5m Diameter -50.8mm			
			Slot # 10 Moteriol -Stainless Steel			
10.0			Sand pack interval: 5.33 to 7.70m BGS			
11.0			Material -# 2 Filter			
11.0						
12.0						
			just the second			
13.0						
NOT	ES: MEASURING POINT ELEVATIONS MAY CHAN	GE: REFER	TO CURRENT ELEVATION T	ABLE		

WATER FOUND STATIC WATER LEVEL T (DEC 12, 1991)

HOLE DESIGNATION: 0W25-91

PROJECT NO .: 0645

PROJECT NAME: ST. MARY'S LANDFILL

DATE COMPLETED: DECEMBER 11, 1991

(L-24)

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

PTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SA	MPLE	
BGS	Amount of the base and a state of the state	m AMSL	INSTALLATION	23	S	N
	REFERENCE POINT (Top of Riser) GROUND SURFACE	323.420 322.86	하는	20002	T E	S. S.
	OL-SiLT(TOPSOIL), little sand and clay, organics, black, maist		CONCRETE SEAL		П	
o.	ML/CL-SILT, some clay, little to some sand, stiff, light brown, moist, cohesive	322.25	CONCRETE SEAL			
.0			190.5mme	İAR	X	
0	- hard, grey-brown		BOREHOLE	1	(\cdot)	
þ			BENTONITE GROUT	2AR	X	
o	- stone		BENTONITE GROLIT	3AR	X	
o				435	\boxtimes	4
0		315.54	BENTONITE PELLET SEAL			
0	SP-SAND, trace silt and fine gravel, fine to medium grained fining upwards, very dense, salt and pepper colour, dry - silt and clay layer (2cm thick) - medium grained, wet	314.35		5SS	X	5
)	THE WOOD TONE OF THE PARTY OF T	313.93	SAND PACK	655	X	3
	GW-GRAVEL, some sand and silt, fine, wet ML-SILT, some sand, little to some clay, few	313,50		755	X	2
.0	large pebbles, very stiff, light grey-brown, moist to wet — gravel seam (5cm thick)	312.50		855	X	4
0	END OF HOLE @ 10.36 m BGS.		SCREEN DETAILS: Screened Interval: 8.84 to 9.75m BGS Length -0.9m			
.0	*		Diameter - 50.8mm Slot # 10 Material - Stainless Steel			
S-O			Sand pack interval: 7.01 to 10.36m BGS Material -# 2 Filter			

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (DEC 13, 1991)

(WL-01) Page 1 of 2

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW32-96 DATE COMPLETED: AUGUST 7, 1996 DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J. MUGFORD

CONCRETE SEAL 203mm 8 BOREHOLE	NUMBER OF STREET	STATE	W VALUE
SEAL	ics		J.W.
SEAL			
—— 203anin 0 BOREHOLE	205		
203am 0 BOREHOLE	205		
BOREHOLE	2CS	$\left\langle \right\rangle$	
		11 /	1 1
BENTONIT	E 305	$\left \right $	
2		$\left \right\rangle $	
			1
51mm Ø P	VC		/ /
PIPE	40	s	
i si N			
, il alo			7
BENTON GRAVEL	ITE		
	5	cs	$\langle \cdot \cdot $
SAND P	ACK	V	
	BENTON GRAVEL	BENTONITE GRAVEL	BENTONITE GRAVEL 5CS SAND PACK

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE WATER FOUND ▼ STATIC WATER LEVEL ▼

(OVERBURDEN)

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW32-96

DATE COMPLETED: AUGUST 7, 1996 DRILLING METHOD: 108mm ID HSA CRA SUPERVISOR: J. MUGFORD

	- TA Data Pite Street Konnect Co. St. days	ELEV.	MONITOR	-	5	AMPLE	
BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	m AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
7.5	ML-SILT (WATER LAID TILL), trace to little fine sand, trace clay, slightly stratified, light grey, damp to moist	315.38	SAND PACK	ecs	V		
3.0					1		
8.5		313.85	Simm Ø PVC			1	
-9.0	ML-SILT (TILL), little sand, gravel and clay, massive, grey-brown, moist			70	s		
-9,5			203mm Ø BOREHOLI	E			
-10.0					1	7	
-10.5	– seams of wet sand and slit @ 10.36 to 10.59 and 10.92 to 10.97m BGS $$	-	WELL	8	cs		
-11.0	– massive till		WELL SCREEN		cs	X	
-11.5	END OF HOLE @ 11.58m BGS	310.98	88.48		-		
-12.0			SCREEN DETAILS. Screened interval: 9.81 to 11.43m BGS Length: 1.52m Diameter: 51mm Slot Size: \$10				
-12.5			Material: PVC Sand Pack: 6.10 to 11.58m BGS Material: #1 Silica Sand				
-13.0			Marchan 11 Line 12 Line				
-13.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CH.	m 1/14	TANK EN ENVATION TAN	N.E.			

(WL-02) Page 1 of 3

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS: LOCATION: AS PER PLAN HOLE DESIGNATION: OW33-96
DATE COMPLETED: AUGUST 8, 1996
DRILLING METHOD: 108mm ID HSA
CRA SUPERVISOR: J. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	-	5	AMPLE	
m BGS	STRATIBRAFFILE DESCRIPTION & DEMANNS	m AMSL	INSTALLATION	- #	STATE	N' VALUE	PID
	REFERENCE POINT (Top of Riser) GROUND SURFACE	321.57 320.88	597	NUMBER	STA	ž.	(pp)
	ML-SILT (TOPSOIL), little sand, little vegetal matter, dark brown, moist	320.36	CONCRET	E	1		
-0.5	ML-SILT (TILL), little sand, trace gravel and clay, firm, light brown, damp to moist	320,30	CONCRET	ics	X		
-1,0	- massive		CONCRET				
-1.5							
-2.0	- stone		< 203mm Ø BOREHOL	2CS	X		
-2.5	- moist			N.			P
-3.0	- hard, damp			36	$\left \right\rangle$		
-3.5				30			
-4.0	— massive, grey, damp to moist		BENTON	ere:	-		
-4.5			BENTON				
-5.0	- 25mm seam of wet sand, silt and gravel @ 5.03m BGS - slightly stratified below 5.03m BGS		259 259	40	s		
-5,5	- slightly stratified below 6.00m 550				_		
-6.0	- highly stratified - wet (dilatant) outwash silts		5imm Ø	PVC			
-6.5	- wet (dilatant) outwash silts - massive, very hard, grey, damp to moist		5lmm Ø PIPE	5(s		

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ¥ STATIC WATER LEVEL ¥

OVERBURDEN)

(WL-02) Page 2 of 3

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW33-96
DATE COMPLETED: AUGUST 8, 1996
DRILLING METHOD: 108mm ID HSA
CRA SUPERVISOR: J. MUGFORD

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
n BGS	STRATIONAL DESCRIPTION & REMAINS	m AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
\top		1		5CS	\times	*	-
7.5			BENTONITE		\setminus		
3.0			Simm Ø PVC PIPE	6CS	X		
3,5	– sand and gravel, some silt, wet 8.61 to 8.71m BGS		BENTONITE GROUT SIMM Ø PVC PIPE BENTONITE GRAVEL				
9.0	 till with little gravel, damp to moist cobbles @ 8.84, 9.14, 9.45 and 9.75m BGS 		231 231	И	$\backslash /$		
9.5			BENTONITE GRAVEL	708	X		
0.0	- very moist		203mm Ø BOREHOLE		$\backslash \backslash$	Ì	
10.5	- hard, dry				\backslash		
11.0				BCS	X		
11.5			SAND PACK		$/ \setminus$		
12.0	- damp to moist						
12.5			WELL SCREEN	ecs			
13.0	 layers of silt, sand and clay very moist to wet (12.70 to 12.75m BGS) dry 				/		
13,5	– some sand, hard, brown, damp to moist Refusal	307.10		(OCS			
	END OF HOLE @ 13.56m BGS		1777				

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW33-96

(WL-02) Page 3 of 3

DATE COMPLETED: AUGUST 8, 1996 DRILLING METHOD: 108mm ID HSA CRA SUPERVISOR: J. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
m BGS		m AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PIO (ppm
-14.5			SCREEN DETAILS Screened Interval: 11.89 to 13.41m BGS Length: 1.52m Diameter: 51mm				
-15.0			Slot Size: #10 Material: PVC Sand Pack: 9.85 to 13.56m BGS				
-15.5			Material: #1 Silica Sand				
-16.0				b			
-16.5							
-17.0							
-17.5							
-18.0							
-18,5							
-19.0							
-19.5							
-20.0							
-20.5							

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♥ STATIC WATER LEVEL ▼

(WL=03) Page 1 of 2

PROJECT NAME: ST. MARYS LANDFILL

PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW34-96
DATE COMPLETED: AUGUST 9, 1996

DRILLING METHOD: 108mm ID HSA CRA SUPERVISOR: J. MUGFORD

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS REFERENCE POINT (Top of Riser) GROUND SURFACE	ELEV. m AMSL 321.59 320.77	MONITOR		SAMPLE			
			INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm)	
	Refer to OW33-96 for stratigraphic details.	320.77		Z	95	Z	- pro-	
0.5	100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 Ma		CONCRETE SEAL					
0.5								
-1.0			203mm d BOREHOLE					
-1.5								
-2.0			BENTONIT GROUT	Ē				
-2.5			Simm Ø PV					
-3.0			PIPE P					
-3.5			BENTONIT GROUT Simm Ø PVI PIPE					
-4.0			BENTONIT GRAVEL	E				
-4.5			BENTONIT SIMM Ø PVI PIPE BENTONIT					
-5.0				١				
-5.5			SAND PAC	ĸ				
-6.0								
-6.5			WELL SCREEN					
N	DTES: MEASURING POINT ELEVATIONS MAY CHANG							

(WL-03) Page 2 of 2

PROJECT NAME: ST. MARYS LANDFILL

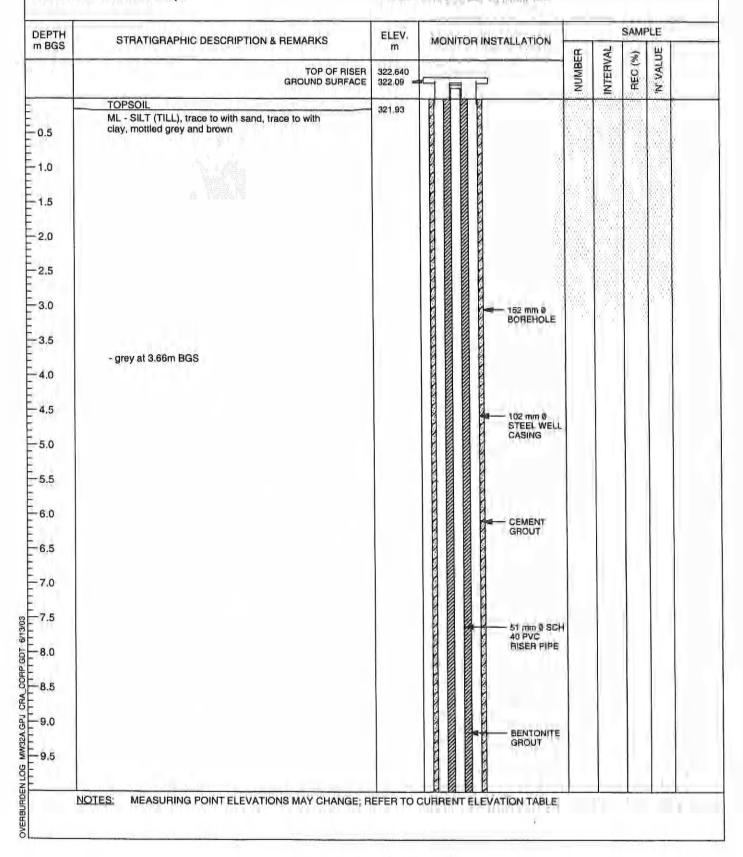
PROJECT NUMBER: 0645 CLIENT: TOWN OF ST. MARYS LOCATION: AS PER PLAN HOLE DESIGNATION: OW34-96
DATE COMPLETED: AUGUST 9, 1996
DRILLING METHOD: 108mm ID HSA
CRA SUPERVISOR: J. MUGFORD

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m AMSL	MONITOR	-	S	AMPLE	
11 503		III AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppr
3.0	ML—SILT (TILL), little sand, clay and gravel, trace cobbles, very hard, massive, brown, damp to moist	— 313.15	SAND PACK SAND PACK 203mm Ø BOREHOLE WELL SCREEN	ICS	V		
1.5	- dry to damp - wet		WELL SCREEN	2CS	\bigvee_{X}		
-	END OF HOLE @ 9.14m BGS	311.83	88. 88		Δ		
0.5		1 "	SCREEN DETAILS Screened interval: 5.94 to 8.99m BGS Length: 3.05m				Y X
0.0			Diameter: 51mm Slot Size: #10 Material: PVC Sand Pack:				
0.5			4.42 to 9.14m BGS Material: #1 Silica Sand				
.0							
1.5							
2.0							
2.5							
3.0							

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ STATIC WATER LEVEL ▼

Page 1 of 5

PROJECT NAME: St. Marys Landfill


PROJECT NUMBER: 645
CLIENT: Town of St. Marys
LOCATION: Town of St. Marys

HOLE DESIGNATION: MW32A-02

DATE COMPLETED: September 17, 2002

DRILLING METHOD: MUD ROTARY

FIELD PERSONNEL: B. KEMPEL

Page 2 of 5

PROJECT NAME: St. Marys Landfill

PROJECT NUMBER: 645
CLIENT: Town of St. Marys
LOCATION: Town of St. Marys

HOLE DESIGNATION: MW32A-02

DATE COMPLETED: September 17, 2002

DRILLING METHOD: MUD ROTARY

FIELD PERSONNEL: B. KEMPEL

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION	ON SAMPLE			HE-	
n BGS		m		NUMBER	INTERVAL	HEC (%)	N.VALUE	
			152 mm Ø BOREHOLE 102 mm Ø STEEL WELL CASING CEMENT GROUT 51 mm Ø SCH 40 PVC RISER PIPE		11.70			
10.5			152 mm Ø BOREHOLE					
A GOOD								
11.0							ľ	
							1	
11.5								
Land								
12.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
40.5			152 mm Ø BOREHQLE					
12.5							1	
-13.0			152 mm Ø BOREHOLE 102 mm Ø STEEL WELL CASING CASING 51 mm Ø SCH 40 PVC RISER PIPE					
10.0							ы	
-13.5								
1000			io2 mm Ø STEEL WELL					
-14.0			CASING CASING					
-14.5			CASING	1				
							Ш	
-15.0				1			1.7	
45.00			GROUT					
- 15.5								
40.0								
-16.0				1		П		
-16.5								
10.0			SI mm @ SCI					
17.0			51 mm Ø SCI 40 PVC RISER PIPE					
					Ш			
17.5								
17.5				V.				
18.0								
-18.0 -18.5 -19.0 -19.5			BENTONITE					
-18.5								
100								
19.0	*							
-19.5			BENTONITE GROUT					
10.0								
							1	

Page 3 of 5

PROJECT NAME: St. Marys Landfill

PROJECT NUMBER: 645
CLIENT: Town of St. Marys
LOCATION: Town of St. Marys

HOLE DESIGNATION: MW32A-02

DATE COMPLETED: September 17, 2002

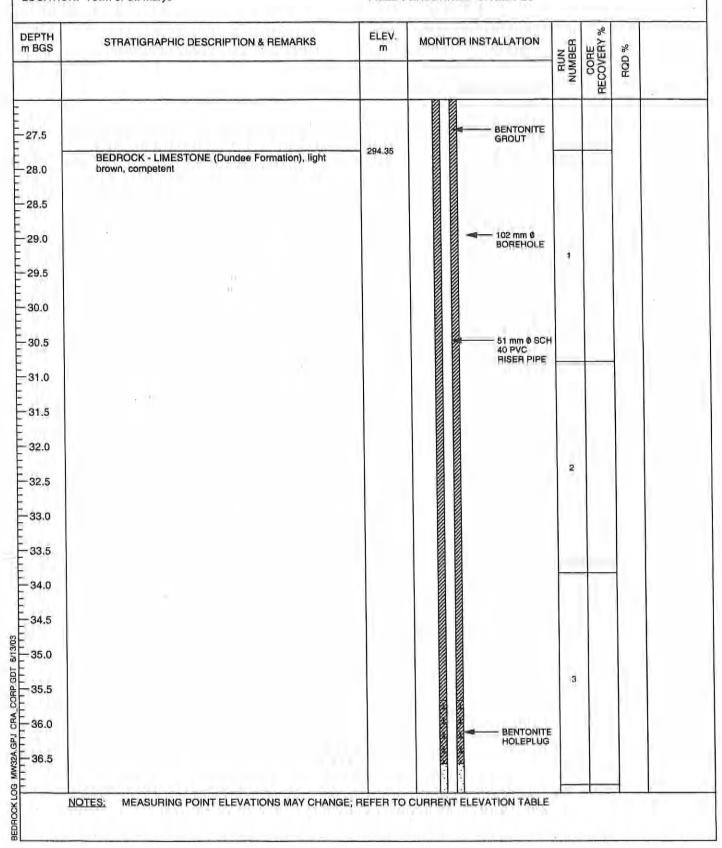
DRILLING METHOD: MUD ROTARY FIELD PERSONNEL: B. KEMPEL

SAMPLE DEPTH ELEV. STRATIGRAPHIC DESCRIPTION & REMARKS MONITOR INSTALLATION m BGS m INTERVAL N' VALUE NUMBER REC (%) 20.5 -21.0 152 mm Ø BOREHOLE -21.5 -22.0 -22.5 102 mm Ø STEEL WELL CASING -23.0 -23.5 - with cobbles at 23.77m BGS -24.0 CEMENT -24.5 - 2' thick quartz boulder at 24.69m BGS -25.0 -25.5 51 mm 0 SCH 40 PVC RISER PIPE -26.0 -26.5102 mm Ø BOREHOLE -27.0 27.5 BENTONITE GROUT END OF OVERBURDEN HOLE @ 27.74m BGS _28.0 OVERBURDEN LOG MW32A.GPJ CRA_CORP.GDT 28.5 -29.0 -29.5 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 4 of 5

PROJECT NAME: St. Marys Landfill


PROJECT NUMBER: 645
CLIENT: Town of St. Marys
LOCATION: Town of St. Marys

HOLE DESIGNATION: MW32A-02

DATE COMPLETED: September 17, 2002

DRILLING METHOD: MUD ROTARY

FIELD PERSONNEL: B. KEMPEL

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 5 of 5

PROJECT NAME: St. Marys Landfill

PROJECT NUMBER: 645 CLIENT: Town of St. Marys LOCATION: Town of St. Marys HOLE DESIGNATION: MW32A-02

DATE COMPLETED: September 17, 2002

DRILLING METHOD: MUD ROTARY

FIELD PERSONNEL: B. KEMPEL

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITOR INSTALLATION	RUN	CORE RECOVERY %	ROD %	
37.5 88.0 88.5 39.0 39.5	bosin to lose delling fluid to tomestion at 40 00m.	+	SAND PACK	4			
10.5 11.0 11.5 12.0 12.5 13.0	- begin to lose drilling fluid to formation at 40.23m BGS		WELL	5.			
13.5 14.0 14.5 15.0 15.5 16.0 N	END OF BOREHOLE @ 43.28m BGS	278.80	WELL DETAILS Screened interval: 281.85 to 278.80m Length: 3.05m Diameter: 51mm Slot Size: 10 Sand Pack: 285.51 to 278.80m Material: #2 SILCA SAND				

LOG OF DRILLING OPERATIONS

OW36

R.J. Burnside & Associates Limited 292 Speedvale Avenue West, Guelph, Ontario N1H 1C4

		1002 WALLES TO DESCRIPTION OF STREET						<u> </u>			1
D:4 N	Town of St. Marys	Project Name:	St. Marys Landt	fill	Logged b	oy: (C. M	artin			
Project in	lo.: 300032339.2016	Location: St.	Marys		Ground (m ams	sI):	313.	78		
Drilling C	co.:	Date Started:	11/29/2016		Static Wa						
Drilling M	Method: Hollow Stem Auger	Date Completed	d: 11/29/2016		Sand Pa					3.93	;
D 41-							SAM	PLE		_	_
Depth Scale	Stratigraphic Descrip	tion	Strat. Depth	\sim		ਦ	ЭС	برا		De Sc	•
						Num.	Type	<u>r</u>			
(ft) (m)	Surface Elevation (m): Light brown SILT (ML); massive	313.78 2: soft:	(m)							(ft)	۲
	cohesive; low plasticity; dry	, 5514,		ceme	nt						
-											L
										_	
- 1.0						1	SS	\times			L
[]											Γ
	0.00		312.41								
5.0	Grey/brown SILT, some clay, so (subangular to subrounded), tra			bento	nite seal			/		5.0	F
	massive; firm; cohesive; mediu					2	SS	X			
- 2.0	moist	, ,,									-2
										_	
	Dark brown SILT and CLAY, so	me gravel	311.40 2.38					\setminus			L
	(subangular to subrounded), tra	ice sand				3	SS	X			
	(ML-CL); massive; stiff to very	stiff; cohesive;						\angle			
10.0 - 3.0	medium plasticity; moist to wet		310.59					/	1	10.0 –	t
	Medium brown SILT, some gra		310.59 3.19			4	SS				
-	to subrounded), trace to some s							$/ \setminus$			F
	some clay (ML); massive; very low plasticity; till; moist	suii, conesive,								_	
- 4.0	, ,							\setminus /			ļ,
						5	SS	X			
L								/_\			L
15.0-								7	1	15.0 –	1
				silica	sand pack	6	SS	X			
- 5.0								$/\setminus$			r
4										_	-
-				scree	n	7	SS				F
								$/ \setminus$			
6.0											Ļ۰
									-	20.0 –	
20.0			6 <i>>>/</i> 2/2/2/			8	SS	ΙX			L
_								$V \setminus$			
_											

Well Record Regulation 903 Ontario Water Resources Act Page of

-	mer's Information	2.84				E			Tv		
First Name	L	-	Organization	2-5-	+ SI 10	E-mail Addre		10			Constructe ell Owner
Mailing Add	dress (Street Number/Nar			IV	funicipality	Province ³	Postal Code	1	Telephone N	lo. (inc.	area code)
1718	Jones Ston	20		- 3:		1.31	-bit P1.	100	21 115		
Well Loc	and the same of th	nhav/Mama		Т	ownship		Lot		Concession	_	
Address of	Well Location (Street Nur	(idenname)		100	ownsing S	- 15	35		16/2 - 3		- Albert
County/Dis	strict/Municipality	-		l.C	ity/Town/Village			Provin		Posta	Code
	Part Production	NI.	a attitue		Junicipal Plan and Sub	lot Number		Ont	ario		
NAD NAD	finates Zone Easting	- In- In-	orthing 	T. I	инкіраї Ріап ани зис	not Number		Ollida			
	en and Bedrock Materia	als/Abando		aling Reco	rd (see instructions on il	ne back of this form;					
General C	Colour Most Comm	on Material		Oth	er Materials	G	eneral Description			Erom From	th (milt)
4	- Control			= 1					- 4		
Gar.						1	20.				
									1		1
						Tr		11.35	V.T.		
Thousand Fo	et at (m/ft)	Armular Type of Sea			Volume Placed	After test of well vi	Results of We eld, water was		aw Down	B	ecovery.
From	To To	(Material an			(m/lt)	Clear and sa		Time (mis)	Water Level (m/lt)	Time (min)	Water Lev
* 1					- En	Other, specif	nued, give reason:	Static	frenty	(trums)	DIVO).
						in paintang discont	mues, give resours.	Level			
							-1	1		1	
						Pump intake set	at (m/lt)	2		2	
						Pumping rate (l/m	un / GPM)	3		3	
_	had of Construction	Flex	LIC-	Well Us		1		4		4	
☐ Caple To	Conventional) Diamond		emestic	[Municipa		Duration of pump	ing	5		5	
Rotary (f	Reverse) Driving		restock	Test Hol	e	Final water swel s	red of pumping (m/h)	-		H	-
Boring Air percu	☐ Digging ussion	□Ind	gation Justinal	El coomá.	a Air Golidananii g.	I will prince some		10		10	
Other s			her, specify			If flowing give cate	(Vmin / GPM)	15		15	
C-21	Construction R			(m/fi)	Status of Well Weter Supoly	Recommended p	umn denth (m/fi)	20		20	
Inside Dismater	Open Hole OR Material (Galvanized, Fibreglass, Congrete, Plastic, Steet)	Wai Tnickness	From	Та	Replacement Well	NSCOTTOTIENGES I D	until display (men)	25		25	
(amini)	Congels, Plastic, Sicel)	(cm/in)		_	Test Hole Recharge Well	Recommended o	ump rate	30		30	
					Dewatering Well	(Vinlin / GPM)		40		40	
					Observation and/or Monitoring Hole	Well production (imin / GPM)			50	
					Construction)	Disinfected?		50		-	
					Abandoned.	_ Yes _ No		60		60	
	Construction R	ecord - Scre	en		Insufficient Supply Abandoned, Poor		Map of W				
Outside Diameter	Waterial	Slet No.		(m/fi)	Water Quality Abandoned other;	Please provide a r	nap below following	instruct	ions on the b	ack.	- 7
(equin)	(Paste, Galvanized, Steel)		From	To	specify	- ; 1			_		
5		1.1		N	Other, specify		230.7	3	0		
					Caron, Episony	- 1	200	8			
		ails			ole Diameter	100	1 - S.	-			
-	Water Det	Fresh	Untested	Dept From	h (m/fi) Diameter				25		
	nd at Depth Kind of Water					10			4		
(m	nd at Depth Kind of Water	сіту	Unlested								
(ir Water foun	nd at Depth Kind of Water n/ft) Gas Oher, spo nd at Depth Kind of Water	cπy Fresh	Unlested			100					
(ir Water foun	nd at Depth Kind of Water	cify Fresh				(ca)					
(ir Water foun (ir Water foun	nd at Depth Kind of Water n/ft) Gas Other, special at Depth Kind of Water n/ft) Gas Other special at Depth Kind of Water n/ft) Gas Other, special at Depth Kind of Water	cify Fresh cify Fresh cify	Untested				-,	d			_
(n Water foun (m Water foun (n	nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water Well Contracto	cify Fresh cify Fresh cify	Untested	n Informat	ion Contractor's Licente No	la la		3			
√n Water foun √m Water foun √n	nd at Depth Kind of Water n/ft) Gas Other, special at Depth Kind of Water n/ft) Gas Other special at Depth Kind of Water n/ft) Gas Other, special at Depth Kind of Water	cify Fresh cify Fresh cify	Untested	n Informat		la la		đ			
(m Water foun (m (m (m Business N	nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water Well Contracto	city Fresh Fresh city and Well	Untested	n Informat We		Comments		d			
Water foun (m Water foun (n Business N	nd at Depth Kind of Water n/ft! Gas Other, spe nd at Depth Kind of Water n/ft! Gas Other spe nd at Depth Kind of Water n/ft! Gas Other, spe Well Contractor nddress (Street Number/Na	city Fresh City Fresh City Tand Well me)	Untested	n Informat Wei	Contractor's Licence No		-	c			-
Water foun (n Water foun (n	nd at Depth Kind of Water ndt Gas Other, spe nd at Depth Kind of Water ndt Gas Other, spe nd at Depth Kind of Water ndt Gas Other, spe nd at Depth Kind of Water Ndt Gas Other, spe Well Contractor	city Fresh City Fresh City Tand Well me)	Untested	n Informat Wei	Contractor's Licence No	Comments Well-owner's Da	its Päckaga Dällveri	ed	Minis	rry Usa	e Only
Water foun (n Water foun (n Business N Business A	nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water N/ft) Gas Other, spe Well Contractor iddress (Street Number/Na	city Fresh city Fresh city and Well me) Business	Untested Technicia	n Informat Wei Mu	Contractor's Licence No nicipality	Comments Well-owner's Da monnation package	te Package Delivere	ed	Minus Audit No.	ry Us	e Only
(m) Water foun (m) Water foun (m) A Business N Business A Province	Indiat Depth Kind of Water Infit Gas Other, special at Depth Kind of Water Infit Gas Other, special at Depth Kind of Water Infit Gas Other, special at Depth Kind of Water Infit Gas Other, special Contractor Infit Gas Other, special Contractor Infit Gas Other Special Code Infit	icity Fresh Gify Fresh Gify and Well me) Business	Untested Technicia E-mail Add Technician (L	Multress	Contractor's Licence No nicipality	Well-owner's Da niomation package delivared Da	ite Paakage Delivere	ed T		ery Us	e Only
Water foun /m Water foun /m Business N Susiness A Province	nd at Depth Kind of Water n/ft) Gas Other, spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water n/ft) Gas Other spe nd at Depth Kind of Water Kind of Water N/ft) Gas Other, spe Well Contractor Iddress (Street Number/Na	icity Fresh Gify Fresh Gify and Well me) Business	Untested Technicia E-mail Add Technician (L	Multress Last Name, I	Contractor's Licence No nicipality	Well-owner's Da	- - ter de	ed T		ry Us	e Only

Measuren	Intario the Er	vironment	Well T	ag No. (Place Sticker a	nd/or Print Below)	Regulatio	n 903 Ontario		
Well Ow	mer's Information	tario the Environment Is recorded in: Metric Imperial							
First Name	e L	Annular Space Undurnicipality See Sone Easting Northing		E-mail Address				Constructed II Owner	
		### Construction Construction Well Use Commercial Depth (print)	Municipality	Province	Postal Code	Teleph	one No. (inc.	area code)	
Well Loc	ation	Information Last Name / Organization Municipality Zone: Easting Northing Municipal Plan-are Municipal Plan-are Municipal Plan-are Most Common Material Other Materials Other				Conce	anion		
		the Environment Ided in:	the second secon		Lot	Conce		Star.	
County/Di	strict/Municipality	### Annular Space Most Common Material	City/Town/Village			Province Ontario	Postal	Code	
UTM Coom	dinates Zone Easting	# Construction Construction Metric Imperial	Municipal Plan and Subl	ot Number		Other			
NAD	8317 487		To the		THE PART AT A				
General C	1					eral Description	т	Dept From	h (m/ft) I To
-					15-17	as III			
Don't "	Secret section		vi	Volume Plengt	After test of well yek	Results of W	ell Yield Tes		acovery
From	Included of Construction Annular Space Set at (m/th) Type of Sealant Used (Masanial and Type) The Included of Construction To (Masanial and Type) To (Masanial and Type) To (Masanial and Type) To (Masanial and Type) To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) To (Masanial and Type) To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) To (Masanial and Type) To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction To (Masanial and Type) The Included of Construction			Clear and sand			Level Time		
	1				If pumping discontinu	ued give reason:	Statio Level	, draid	
		788					†	1	
					Pump intake set at	(m/ti)	2	2	
					Pumping rate (limin	COM	3	3	
		Heir			in an their take taken	z su ivy	4	4	
Caple T		☐ Domestic	Munic	Dewatering Lag	Duration of pumpio hrs +	g min	5	1.5	
Rotary (-		Final water level and		10	10	
Other, s			ify		If flowing give rate (limin / CPMI	15	15	
				Status of Well	I i iowiig give sale i	print(ypSi siy)	20	20	
Inside: Diameter		Trickness			Recommended pur	np death (m/ft)	25	25	
(cervia)		(cm/m) From	10	Test Hole	Recommended pur	np.rate	30	30	
				Dawatering West	(I/mitr / GPIM)		40	40	
			-	Observation and/or Monitoring Hole	Well graduation (I/m	iln / GPM)	59	50	
					Discreted?		60	60	
				Insufficient Supply	Yes Nt	Man of M	ell Location		
Outside Djameler (2ro/iii)	Mozenal (Plastic, Selvanized, Steel)	Slot Ivo. ≕ron		Water Quality Abandoned, other, specify Other, specify	Please provider a ma				1
Water four	nd at Depth Kind of Water m/ll) Gas Gother, spe nd at Depth Kind of Water m/lt) Gas, Other, spe nd at Depth Kind of Water m/lt) Gas, Other, spe m/lt) Gas, Other, spe Well Contractor	Fresh Untes	ted cian Inform	epth (m/t) Diameter (um/n) To: (um/n) halfor Well Contractor's Licence No.	Comments:	-a7		liga line	
1	ione No. (inc. sues code) Na	me of Well Technica	in (Last Nami	Date Submitted	information package delivered	Package Deliver	April 1	finistry Use	Only
#906E (12/2)	007)	Information Last Name / Organization (Street Number/Name) Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Municipality Location (Street Number/Name) Annular Space Other Material Annular Space Other Material Other Material Other Material Other Material Other Material Annular Space (Material and Type) Annular Space (Material and Type) Annular Space (Material and Type) Topation (Material Indiana) Location (Material Indiana) Municipality Material Indiana Municipality Material Indiana Municipality Multipality Multipality Multipality Municipality Multipality Municipality Munic		Well Gwrer's Co	D)		- 00	ucens Prima S	Ortano, 2007

Table B.1 Borehole Details St. Marys Landfill

Borehole	Date	Ground Elevation (amsl)	Borehole Depth (bgs)	Borehole Depth (amsl)	Location
BH10-91	15-Oct-91	317.37	20.12	297.25	Phase II/III
BH11-91	10-Oct-91	316.25	17.68	298.57	Phase II/III
BH12-91	16-Oct-91	317.07	19.96	297.11	Phase II/III
BH13-91	18-Oct-91	313.79	15.54	298.25	Phase II/III
BH14-91	21-Oct-91	317.60	7.57	310.03	Phase II/III
BH16-91	21-Oct-91	317.24	7.32	309.92	Phase II/III
BH18-91	16-Nov-91	317.00	7.47	309.53	Phase II/III
BH19-91	16-Nov-91	317.39	6.71	310.68	Phase II/III
BH20-91	9-Dec-91	315.62	6.71	308.91	Phase II/III
BH22-91	10-Dec-91	314.22	4.27	309.95	Phase II/III
BH23-91	11-Dec-91	313.97	5.18	308.79	Phase II/III
BH24-91	11-Dec-91	313.97	4.57	309.40	Phase II/III
BH26-91	12-Dec-91	316.96	8.23	308.73	Phase II/III
BH27-91	12-Dec-91	316.01	8.23	307.78	Phase II/III
BH28-91	12-Dec-91	313.50	6.55	306.95	Phase II/III
BH29-91	13-Dec-91	314.24	6.71	307.53	Phase II/III
BH30-91	13-Dec-91	317.61	8.23	309.38	Phase II/III
BH31-91	13-Dec-91	316.52	8.08	308.44	Phase II/III

Notes:

All measurmetns are in metres amsl - above mean sea level bgs - below ground surface

(1,-1)9]

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

CLIENT:

TOWN OF ST. MARY'S

LOCATION:

AS PER PLAN

HOLE DESIGNATION: BH10-91

(Page 1 of 2) OCTOBER 15, 1991 DATE COMPLETED:

DRILLING METHOD:

108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

The second second	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
n BGS	GROUND SURFACE	m AMSL	INSTALLATION	AMBECZ MH3 HG
1.0	ML—SILT(TILL). little fine sand, little to same clay, little gravel, stoney, soft, maist, fractured to 0.30m — very hard, light brown, dry to damp — little to same clay, some sand, very stiff, light to medium grey—brown, damp	3,50,77	CONCRETE SEAL	ics V
3.0	– some clay, softer, massive, moist			3cs
4.0 5.0	ML-SILT(GLACIOLACUSTRINE), some clay, soft, ldyered, moist to wet, dilatant - some clay, occasional pebble, more massive, less layering	313.56	203.2mme BOREHOLE	
	GW/SW-GRAVEL and SAND, gravel is fine, sand is fine to coarse grained, little to some silt, brown, saturated	312.19		4CS
5,0	ML-SILT, (GLACIOLACUSTRINE), trace to some clay, few pebbles, slightly layered, light brown and grey, damp	311.43		scs V
.0	ML-SILT(TILL), some clay, some sand, occasional pebbles, stones, very hard, stiff, brown to dark brown, damp — increasing gravel content		BENTONITE GROUT	
1.0	SW-SAND, fine to coarse grained, some coarse gravel, little to some silt, brown, saturated	308.84 308.68		(7.3 – a.5m)
0,0	ML-SILT(TILL), some clay, little to some coarse sand and gravel, few cobbles, very hard, stiff, brown and grey, damp — few cobbles		V	7CS
11.0	— fine to coarse sand seam with some silt and gravel, wet (2cm thick)			8CS
12.0	- Itorizontal fracturing			
13.0				ecs X

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-09)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

TOWN OF ST. MARY'S

LOCATION:

CLIENT:

AS PER PLAN

GRAIN SIZE ANALYSIS

HOLE DESIGNATION: BH10-91 (Page 2 of 2) DATE COMPLETED: OCTOBER 15, 1991

DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		PLE
n BGS		m AMSL	INSTALLATION	- SAR	AT AT E
14.0				10CS	X
15.0			20.3.2mm# BOREHOLE		$\langle \rangle$
16.0				1105	\bigwedge
17.0	- fine to medium grained sand seam, little silt, wet, (6cm thick)		BENTONITE GROUT	12CS	\bigvee
18.0	silt, wet, (6cm thick) — trace sand, moist				$\langle \cdot \rangle$
19.0				13CS	X
20.0	LIMESTONE (BEDROCK) END OF HOLE @ 20.12 m BGS.	297.56 297.25		14CS	\times
21.0					
22.0	HI				
23.0					
24.0					
25.0					

WATER FOUND V

STATIC WATER LEVEL

(L- 10)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

CLIENT:

TOWN OF ST. MARY'S

LOCATION:

AS PER PLAN

HOLE DESIGNATION: BH11-91 (Page 1 of 2) DATE COMPLETED: OCTOBER 10, 1991

DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAL	APLE
m BGS		m AMSL	INSTALLATION	- 3	5 7
	GROUND SURFACE	316.25		BITO	1 5
	SM-SAND, same silt, same roots, loose, brown	316.10	CONCRETE SEAL		1
1.0	ML-SILT(TILL), little to some clay and sand, little gravel, hard, very stiff, light brown and grey, damp	315.34		1CS	X
	ML/SM-SILT and SAND(GLACIOLACUSTRINE), fine grained, little clay, trace pebbles	314.42			
2.0	ML/CL-SILT(TILL), some clay, little sand, trace gravel, hard, very stiff, unfractured, light brown to grey, damp to moist	y, 1, 12		(1.8 - 3.1m)	XI
3.0					
	CH (All CH T(C) ACIOL ACI (CTRINE)	312.44		305	V
4.0	SM/ML-SILT(GLACIOLACUSTRINE), some fine grained sand, trace clay, paorly graded, well layered (undulating), tan, damp to maist — fine sand searn, little to some silt,				\wedge
5.0	- fine sand seam, little to some silt, saturated (4.45m to 4.50m BGS)	1	20.3. Strime HOREHOLE		
				4CS	XI
6.0	or motors Abelian America (Ad.)	710.00			
7.0	ML/CL-SILT(TILL), some clay, some fine to coorse gravel, little sand, few cobbles, very hard, stiff, light brown to grey, damp — oblique fracture with silt infilling	310.00	BENTONITE	5CS	X
	– dry ta damp		PESTA GROUT		
8.0					M
1.4				6CS	Λ
9.0					(
10.0	- 2cm wet pocket (@ 9.9m BGS)			7CS	X
10.14	- softer (10.0m to10.5m BGS)			10.11	/
11,0					∇
				8CS	X
12.0					
1417		303.45		6.00	\bigvee
13.0	ML—SILT(GLACIOLACUSTRINE), little to some clay, little fine sand, accasional pebble, layered, varved, light grey to light brown, damp to maist	2 2 60 101		9CS	\triangle

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-10)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

CLIENT:

TOWN OF ST. MARY'S

GRAIN SIZE ANALYSIS

LOCATION:

AS PER PLAN

HOLE DESIGNATION: BH11-91

DATE COMPLETED:

(Page 2 of 2) OCTOBER 10, 1991

DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS		m AMSL	INSTALLATION	2 A B B C C	S T A T E	
4.0	ML-SILT(TILL), little to some fine sand and clay,	301.95	2012	10CS	V	
5.0	little gravel, very dense, hard, damp		BOREHOLE BENTONITE GROUT	1.07.7	\triangle	
6.0	 becoming silt with some sand and little clay, partially cemented 		GROUT	1105	X	
7.0		298.88		12CS	X	
8.0	LIMESTONE(BEDROCK), light grey and brown, layered, massive END OF HOLE @ 17.68 m BGS.	298.57				
9.0						
0.0			•			
1,0	X .					
2.0						
23.0						
24.0						
25.0						
26.0						

(1-11)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

TOWN OF ST. MARY'S

LOCATION:

CLIENT:

AS PER PLAN

HOLE DESIGNATION: BH12-91 (Page 1 of 2) DATE COMPLETED: OCTOBER 16, 1991

108mm ID HSA

DRILLING METHOD: CRA SUPERVISOR:

J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPL	
m BGS	GROUND SURFACE	m AMSL 317.07	INSTALLATION	W W W W C Z	M-4-E	2000
1.0	ML-SILT(TILL), some clay, little sand, trace gravel, few cabbles, soft, well fractured, light brown to brown, damp - very hard, occasional fracture		CONCRETE SEAL		X	E
2.0				2CS	X	
3.0	ML-SILT(OUTWASH), some very fine grained sand, trace clay, occasional pebble, compact, poorly graded, tan, saturated	314.17		3CS) (2.9 - 4.1m)	$\langle \rangle$	
4.0 5.0	ML—SILT(TILL), some clay, some sand, little gravel, hard, very stiff, slight harizantal fracturing and layering, brown, damp	312.96	203.2mm BOREHOLE	4CS)	$\langle \rangle$	
6.0				5.8m)	\bigvee	
7.0	 trace to little gravel, frequent pebbles and cobbles, stiff, medium brown, damp 		BÉNJONITE GROUT	503	A	
8.0	- sand, silt and gravel seam (8.23 to 8.38m BGS)			6CS	X	
9.0	– wet seam – wet seam			7CS	\forall	
10.0	— little clay and sand, trace gravel, crumbly and fissile, light brown—grey, dry to damp			1	\triangle	
11.0	- dry sand seam (2cm thick)			8CS	X	
12.0	4- 			905	\bigvee	
13.0	— frequent sub-horizontal to oblique fractures, dark brown, moist (13.4 to 14.3m BGS)				\triangle	

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-11)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

TOWN OF ST. MARY'S

LOCATION:

CLIENT:

AS PER PLAN

GRAIN SIZE ANALYSIS

HOLE DESIGNATION: BH12-91

DATE COMPLETED: (Page 2 of 2)
OCTOBER 16, 1991

DRILLING METHOD: 108mm ID HSA CRA SUPERVISOR:

J.C. MUGFORD

HTGEC	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS		m AMSL	INSTALLATION	S S S S S S S S S S S S S S S S S S S	STATE	
14.0	— occasional thin varved intervals			10CS	X	
5.0	 oblique fractures, moist (14.94 to 15.40m BGS) little clay, trace to little gravel, hard, blocky structure, medium brown-grey, damp 		203.2mm BOREHOLE	1103	$\langle \rangle$	
6.0			BENTONITE	1908	\triangle	
7.0	- less pebbles		GROUT	12CS	X	
8.0	- layered silts (18.29 to 19.20m BGS)				$\langle \cdot \rangle$	
19.0	SP-SAND, fine grained, little to some silt, poorly graded, dry	297.87		13CS	X	
20.0	poorly graded, dry	297.11		14CS	\boxtimes	1
20.0	\LIMESTONE(BEDROCK) END OF HOLE @ 19.96 m BGS.] 237.11	TEMPER TO THE TE			
21.0	2.10 31 11322 9 13.30 111 303.					
22.0						
23.0						
24.0						
25.0						

WATER FOUND X

STATIC WATER LEVEL

(L-12)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO.: 0645

TOWN OF ST. MARY'S

CLIENT: LOCATION:

AS PER PLAN

DEDTH I STOATICD ADDIC DESCRIPTION & DEMARKS

HOLE DESIGNATION: BH13-91

MONITOR

DATE COMPLETED: OCTOBER 18, 1991

DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SA	MPLE	5
BGS	Parental (19 of 17 of 10 of 10 of 10	m AMSL	INSTALLATION	Ü	5	7
	GROUND SURFACE	313.79		PROFES	7 8	4737
	ML—SILT(OUTWASH), little sand, little clay, few pebbles, stiff, interlayered, brown and tan, damp	1000	CONCRETE SEAL	1CS	V	
٥.	ML/CL-SILT(TILL), some clay, some sand, trace gravel, hard, stiff, damp — fractured	312.88			$\langle \cdot \rangle$	
2.0	- fine to coarse grained sand seam, trace silt, wet (2cm thick)			2CS	X	
.0	silt, wet (2cm thick)				()	
				3CS	X	
.0				100	\triangle	
.0	- horizontal fracture, shiny		203.2mm ^a BOREHOLE	4CS (5CS)	$\widehat{\nabla}$	
.5	- no fractures observed			(4.6 - 5.6m)	\triangle	
٥.				cor	M	
.0				6CS	Λ	
			GROUT			
.0				7CS	X	
.0			4 - 6		$\left(\cdot \right)$	
	- frequent horizontal to sub-vertical fractures, shiny, smooth, maist (9.14 to 10.67m BGS)			acs	X	
0.0				7		
1.0	- dry to damp			acs	V	
, .0	- little to some clay, damp			503	Λ	
2.0		301.54			17	
3.0	ML—SILT and SAND(TILL), little gravel, trace to little clay, compact, non-cohesive, tan to light brown, moist, partially cemented	132020		1005	X	
Total					-	

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME: ST. MARY'S LANDFILL

0645

TOWN OF ST. MARY'S

LOCATION:

CLIENT:

PROJECT NO .:

AS PER PLAN

GRAIN SIZE ANALYSIS

(L-12)

HOLE DESIGNATION: BH13-91 (Page 2 of 2) DATE COMPLETED: OCTOBER 18, 1991

DRILLING METHOD: 108mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	m AMSL	MONITOR INSTALLATION	SAMPLE
1 063		III AMSL	INGIALLATION	- NO MODER
14.0	- very moist		BOREHOLE BENTONITE GROUT	(13.3 – 14.8m)
5.0	VIMESTONE (BEDBOOK)	298.25		12CS
6.0	LIMESTONE(BEDROCK) END OF HOLE @ 15.54 m BGS.			
17.0				
18.0				
9.0				
20.0				
21.0				
22.0				
23.0				
24.0				
25.0				
	1			

WATER FOUND V

STATIC WATER LEVEL

(1-13)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH14-91

PROJECT NO.: 0645

DATE COMPLETED: OCTOBER 21, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 108mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

HTGE	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
n BGS	GROUND SURFACE	m AMSL 317.60	INSTALLATION	amarcz	AT AT E	1
1.0	ML/CL-SILT(TILL), some sand and clay, damp		CONCRETE SEAL	Ř	7	
3.0 4.0 =	ML-SILT(GLACIOLACUSTRINE), same clay, little fine grained sand, few pebbles, saft to firm, layered, light brown to brown, maist	314.60	BOREHOLE BENTONITE GROUT	ics	X	
5.0	ML-SILT(TILL). little to some sand, little clay, trace gravel, few cobbles, firm, light brown, moist	313.13		2CS	X	
5,0	ML-SILT(OUTWASH), little to some very fine sand, trace clay, occasional pebble, compact, tan, wet — occasional fine to medium grained sand seam, wet (2cm thick)			3CS	X	
7.0	ML/CL-SiLT(TiLL), some clay and sand, trace gravel, very stiff, medium to dark brown, moist — damp	6.5.6		4CS	X	
3.0	END OF HOLE @ 7.57 m BGS.	310.03	aremate.			
0.0	75400 4535 5355					
0.0						
1.0						
2.0						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-15)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH16-91

PROJECT NO .: 0645

DATE COMPLETED: OCTOBER 21, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 108mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
n BGS	GROUND SURFACE	m AMSL 317.24	INSTALLATION	2 Januaros	STATE	1
	ML-SILT(TILL), some clay and sand, damp to moist	F17087	CONCRETE SEAL	R	L	Ē
1.0						
2.0	*1	Marie	203.2mmls BOREHOLE			
3.0	ML/CL-SILT and CLAY(GLACIOLACUSTRINE), trace to little fine sand, layered, firm, tan to light brown, moist	313.89	BOREHOLE	(2.7 -	M	
4.0	ML—SILT(TILL), some fine grained sand, little clay, firm, tan, saturated SW—SAND, coarse grained, little silt, little gravel, little fine grained sand, saturated	313.43	BENTONITE GROUT	3.4m) 2CS	$\langle \rangle$	
5.0				3CS		
6.0	- some gravel	310.53		4CS	V	
7.0	ML/CL-SILT(TILL), same clay, stiff, brown, damp to maist — fine to medium grained sand seam, wet (20cm thick)	309.92			\triangle	
8.0	END OF HOLE @ 7.32 m BGS.					
9.0	×					
10.0	*					
11,0						
12.0						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(1-17)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH18-91

PROJECT NO.: 0645

DATE COMPLETED: NOVEMBER 16, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS	GROUND SURFACE	m AMSL 317.00	INSTALLATION	S D D D D D D D D D D D D D D D D D D D	STATE	CTACE
-	GM-GRAVEL(FILL), some silt, some sand, loose brown, moist		CONCRETE SEAL	Ř	+	Ē
.0	ML-SILT(TILL), same sand, little to same clay, little gravel, hard, light brown, damp to moist	316.39				
2.0				155	X	50
٥.	- damp		BOREHOLE	255		57
0	ML/CL-SILT and CLAY(GLACIOLACUSTRINE), occasional pebble, hard, layered, darnp	313.42	BENTONITE GROUT	355	\Rightarrow	4
o	ML—SILT(OUTWASH), little sand and clay, Tining upwards, very dense, brown, wet, dilatant/	312.12 311.77		4 \$ \$	X	7
0	ML-SILT(TILL), some sand, some clay, little gravel, grey-brown, hard, damp to maist			5SS	X	7
0	SW-SAND, trace silt, well graded, medium dense, salt and pepper colour, saturated ML/CL-SILT(TILL), some clay, some sand, little	310.75 310.29		655	\succeq	2
	gravel, hard, grey-brown, damp END OF HOLE @ 7.47 m BGS.	309.53		755	X	4
0						
0						
,o			¥			
.0						
.o						
7.1						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-18)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO.: 0645

CLIENT:

TOWN OF ST. MARY'S

LOCATION:

AS PER PLAN

HOLE DESIGNATION: BH19-91

DATE COMPLETED: NOVEMBER 16, 1991

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

DEPTH		ELEVATION	MONITOR	SA	MPLE	
m BGS		m AMSL	INSTALLATION		S	,A.
	GROUND SURFACE	317.39		ZUMBECZ	Ť E	ALUE
1.0	ML/CL-SILT(TILL), some clay and sand, maist		CONCRETE SEAL	K		
2.0	SW/GM-SAND and GRAVEL, little silt, loose,	- 315.56				
3.0	wet, occasional silt layer		190.5mme BOREHOLE			
4.0			BENTONITE GROUT	155	\times	35
- 5.0	- coarse grained sand	312.36		255	X	80
- 6.0	SM-SILT and SAND, very fine grained, very dense, light brown, wet ML/CL-SILT(TILL), some clay, some sand, little gravel, hard, medium brown-grey, damp	312.21				
7.0	END OF HOLE @ 6.71 m BGS.	- 310.68		355	X	76
8.0						
9.0						
10.0						
11.0						
12.0						

GRAIN SIZE ANALYSIS

(L-19)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH20-91

PROJECT NO .:

0645

DATE COMPLETED: DECEMBER 9, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SA	MPLE	
m BGS	Laterage and district and the finding attention and	m AMSL	INSTALLATION	100000	S.	Ä,
	GROUND SURFACE	315.62		233868	Ť	ALUE
	ML-SILT(TILL), little to some clay and sand, trace gravel, hard, damp		CONCRETE SEAL	-		-
1.0		50c to 61 cc		155	\boxtimes	69
2.0	ML-SILT(TILL, REWORKED LACUSTRINE), some clay, trace to little fine sand, hard, light	314.09		255	\times	69
	brown, damp - few dark brown moist clayey seams, few small pebbles, no obvious layering - laminated silt and clay layers, hard,	313.09	190.5mme BOREHOLE	388	\boxtimes	91
3.0	light brown, damp ML/SM-SILT(LACUSTRINE), little to some			455	X	86
4.0	very fine sand, trace clay, tan, dilatant, wet, dense, trace layering, non-cohesive — very dense, slight layering, few dilatant	311.50	BENTONITE GROUT	555	X	77
5.0	sand pores - undulating silt and sand bedding layers (2 to 4cm thick)			6SS 7SS	X	67
747	ML-SILT(TILL), some clay and sand, trace gravel, hard, brown — fine to medium sand and silt layers, wet			888	∇	54
6.0	(0.5 to 1.5cm thick @ 4.27, 4.36, 4.45 and 4.54m BGS) — little to some sand, few large peobles.	1000		955	A	54
7.0	extremely hard, damp - little gravel END OF HOLE @ 6.71 m BGS:	308.91				ï
8.0	The control of the co					
9.0						
10.0						
					7 1	
11.0						
11.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-21)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO.: 0645

HOLE DESIGNATION: BH22-91

DATE COMPLETED: DECEMBER 10, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION: AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS		m AMSL	INSTALLATION	U	T	» KZ
	GROUND SURFACE	314.22		N D B C Z	Ê	
	SW-SAND, little silt, trace gravel, fine to medium grained, loose, brown, saturated	7,732,7	CONCRETE SEAL	155	X	2
o	ML—SILT(TILL), some sand, little gravel, trace to little clay, hard, brown, moist	313.61		255	$ \forall $	7
	GW-GRAVEL, some sand, little silt, saturated	312.70	190.5mms BOREHOLE	COLE	$\langle \cdot \rangle$, i
0	ML-SILT(TILL), some sand, little clay and gravel, hard, light brown, moist	3/2.70	BENTONITE	355	\boxtimes	62
			GROUT	455	X	
)	- some clay, grey	1 1		100		
	- very stoney (3.66 to 4.27m BGS)			555	X	4
)		44444				
	END OF HOLE (REFUSAL) @ 4.27 m BGS.	309.95	Secretarion			
1					Ш	
)						
		1 1				
)						
)						
o						
					1	
		1				
0						
0						
5.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(1-22)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH23-91

PROJECT NO .:

0645

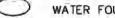
DATE COMPLETED: DECEMBER 11, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD


LOCATION:	AS	PER	PLAN	

DEPTH		ELEVATION	MONITOR		IPLE	
n BGS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m AMSL	INSTALLATION	23:	ST	À.
	GROUND SURFACE	313.97	11111	PHOECZ	AFE	MCF
	ML-SILT(LACUSTRINE), little to some very fine sand, trace clay, occasional small pebble, non-cohesive, medium dense, tan, moist	313.51	CONCRETE SEAL	155	X	25
1.0	ML-SILT(TILL), some sand, little clay, little gravel, stiff, brown, damp	313.21		255	X	56
	SM-SAND and SILT, some gravel, very dense, brown, moist to wet	312.45	190.5mme	355	∇	38
2.0	ML—SILT(TILL), some clay and sand, trace gravel, hard, brown, damp to moist — stones and gravel (2.29to 3.05m BGS)		BOREHOLE	Ter		12.5
3.0	- damp		BENTONITE GROUT	455	X	60
4.0						
	- stoney			555	\forall	>10
5.0	END OF HOLE @ 5.18 m BGS.	308.79		333	\triangle	-10
6,0	The state of the s					
7.0						
8.0						
9.0						
10.0						
11.0					l I	
11.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-23)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH24-91

PROJECT NO .:

0645

DATE COMPLETED: DECEMBER 11, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

EPIH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAI	MPLE
n BGS	MATERIAL PROPERTY OF AND AND ADDRESS.	m AMSL	INSTALLATION		
	GROUND SURFACE	313.97		2020ECZ	S T A T E
1.0	ML-SILT(TILL), some sand and clay, little gravel, hard, light brown, damp		CONCRETE SEAL	1AR	X '
1776	- stoney, brown		190.5mme BOREHOLE		\triangle
2.0				2AR	\bigvee
3.0			BENTONITE GROUT		$\langle \cdot \rangle$
1.0				3AR	X
5.0	END OF HOLE @ 4.57 m BGS.	309.40	525 VCTA		
.0					
.0					
.0					
.0					
0.0					
0.0 1.0 2.0					

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

(L-25)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO .:

0645

TOWN OF ST. MARY'S

CLIENT: LOCATION:

AS PER PLAN

HOLE DESIGNATION: BH26-91

DATE COMPLETED: DECEMBER 12, 1991

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS	GROUND SURFACE	m AMSL 316.96	INSTALLATION	BENCH	ATE	Crock
	ML-SILT(TILL), some clay and sand, little gravel, hard, grey-brown, moist, cohesive		CONCRETE SEAL	Ř		E
)	ML/SM-SILT(LACUSTRINE), same fine sand, little clay, very dense, tan, maist to wet, faint	315.95		1SS		3
o	Invering, non-cohesive ML-SILT(TILL, REWORKED LACUSTRINE), some fine sand, little to some clay, trace gravel	315.13		255	\boxtimes	4
)	light grey-brown, damp to maist, cohesive -accasional clay seam with thin (.5cm thick) silt and fine sand layering, damp to maist, accasional maist ablique fracture		190.5mme BOREHOLE	355	\boxtimes	2
	- trace fine pebbles			455	X	70
)		make I	BENTONITE GROUT	555	\mathbb{A}	
)	GW-GRAVEL, some sand, trace silt, stoney, very dense, saturated	312.24	GRODT	6SS	\boxtimes	7
)	SW-SAND, some gravel, fine to coarse grained, very dense, salt and pepper colour, saturate ML/SM-SiLT, some fine sand, trace clay,	311.02		755	\boxtimes	2
i.	tan, saturated ML-SILT(TILL), some sand and clay, trace to little gravel, hard, light grey-brown, damp to maist	310.71		8SS	\times	- 1
	END OF HOLE @ 8,23 m BGS.	308.73		955	X	1
	END OF HOLE & CLES III BOS					
۵						
o						
. о						

GRAIN SIZE ANALYSIS

(L-26)

PROJECT NAME: ST. MARY'S LANDFILL

PROJECT NO.: 0645

TOWN OF ST. MARY'S

GRAIN SIZE ANALYSIS

LOCATION:

CLIENT:

AS PER PLAN

HOLE DESIGNATION: BH27-91

DATE COMPLETED: DECEMBER 12, 1991

DRILLING METHOD: 95mm ID HSA

CRA SUPERVISOR: J.C. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
n BGS	GROUND SURFACE	m AMSL 316.01	INSTALLATION	20000	TATE	Cr 3<2
1.0	ML—SILT(TILL), some sand and clay, little gravel, light brown, damp		CONCRETE SEAL	Ř		
2.0	ML-SILT(LACUSTRINE), some clay and fine sand, dense, tan, damp, layered	314.49		155	X	4
3.0	, v	1.12.12	BOREHOLE	255	X	4
4.0	SW-SAND, some gravel, fine to coarse grained, well graded, very dense, saturated	312.20	BENTONITE			
5.0	ML-SILT(TILL), some sand and clay, little gravel, very hard, light brown, damp to moist	311.29	GROUT	355	X	5
.0				4SS	\boxtimes	>!
.0						
.0	END OF HOLE @ 8.23 m BGS.	307.78		555	X	9
.0						
0.0						
1.0						
2.0						
3.0						
- 13.0 NOT	ES: MEASURING POINT ELEVATIONS MAY CHAN	GE- REFER I	TO CURRENT ELEVATION T	ARIF		

STRATIGRAPHIC AND INSTRUMENTATION LOG

(OVERBURDEN)

PROJECT NAME: ST. MARY'S LANDFILL

HOLE DESIGNATION: BH28-91

PROJECT NO .: 0645

DATE COMPLETED: DECEMBER 12, 1991

(L-27)

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION: AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS	GROUND SURFACE	m AMSL 313.50	INSTALLATION	ZJEBECZ	STATE	MCL > CZ
	ML-SILT(TILL), some sand and clay, little gravel, very stoney, hard, brown, damp		CONCRETE SEAL	Ř		Ē
1.0	graver, very stories, mara, brown, damp					
2.0			190,5mmd BOREHOLE	155	\times	3.
3.0			BOREHOLE	u.		ı
4.0	– maist		BENTONITE GROUT	255	X	4
+.0	- damp			355	\sim	
5.0				333		
5.0				455	∇	5
7.0	END OF HOLE @ 6.55 m BGS.	306.95				
3.0						
9.0						
0.0						
11.0						
12.0	l l			1	1 1	

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

HOLE DESIGNATION: BH29-91

PROJECT NO.: 0645

DATE COMPLETED: DECEMBER 13, 1991

(L-28)

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

CLIENT: LOCATION:

AS PER PLAN

PROJECT NAME: ST. MARY'S LANDFILL

CRA SUPERVISOR: J.C. MUGFORD

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
m BGS	GROUND SURFACE	m AMSL 314.24	INSTALLATION	DIMBECZ	STAFE	MCr> <z< th=""></z<>
	GW-GRAVEL(FILL), some silt and sand, dense, moist		CONCRETE SEAL	- K		
1.0	ML-SILT(TILL), some clay and sand, little gravel, hard, brown, damp	313.33				
- 2,0	– sand seam (0.5cm thick)		190.5mme BOREHOLE	155	X	32
- 3.0	- very hard			255	∇	43
4.0		3.34	BENTONITE CROUT	107		
- 5.0	H HI			355	X	66
- 6.0				450	∇	0.0
- 7.0	END OF HOLE @ 6.71 m BGS.	307.53		4SS	\triangle	86
- 8.0						
- 9.0						
- 10.0						
11.0	,					
12.0						
- 13.0	4					

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

STATIC WATER LEVEL

HOLE DESIGNATION: BH30-91

PROJECT NAME: ST. MARY'S LANDFILL 0645 PROJECT NO .:

DATE COMPLETED: DECEMBER 13, 1991

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

(L-29)

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

PTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	
BGS	GROUND SURFACE	m AMSL 317.61	INSTALLATION	239000	STATE	2>41
	ML—SILT(TILL), some sand and clay, little gravel, stoney, hard, brown, damp		CONCRETE SEAL	-R	,	E
.0				1AR	\bigwedge	
0		315.32				
0	ML-SILT(LACUSTRINE), some clay, little to some fine sand, medium dense, tan, maist	1,171	190.5mm# BCREHOLE	2AR	X	
	ML/SM-SILT(OUTWASH), some fine sand, trace clay, very dense, tan, wet - fine to medium grained sand and silt seam, wet (3.35 to 3.51m and 3.81 to 4.11m BGS) - accasional pebble, caarsely layered.	314.56		355	X	72
)	- occasional pebble, coarsely layered, very dense, wet		BENTONITE	455	\boxtimes	>5
)	- silt with little fine sand and clay	312.43	GROUT	5SS	\boxtimes	>10
	ML-SILT(TILL), some clay and sand, little gravel, staney, very hard, brown, damp	7,770		655	X	36
	- moist			755	X	36
				855	∇	6
	END OF HOLE @ 8.23 m BGS.	309.38	S8463	000	\triangle	ν.
a						
0						
0.						
0.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

HOLE DESIGNATION: BH31-91

PROJECT NO .: 0645

PROJECT NAME: ST. MARY'S LANDFILL

DATE COMPLETED: DECEMBER 13, 1991

(L-30)

CLIENT:

TOWN OF ST. MARY'S

DRILLING METHOD: 95mm ID HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: J.C. MUGFORD

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	S	AMPLE	
BGS		m AMSL	INSTALLATION	N.	S	Ä.
	GROUND SURFACE	316.52		MARK Z	T E	- Tipe
	ML-SILT(TILL), some sand and clay, trace gravel, hard, brown, damp		CONCRETE SEAL	K		
1.0						
2.0				155	X	49
3.0	ML/SM-SILT(LACUSTRINE), little fine sand, little to some clay, hard, tan, moist to wet gradational layering — silt with some fine sand (3.20 to 3.51m BGS)	313.78	190.5mme BOREHOLE	255	X	58
.0		312.25	25,05,05	110		
.0	ML-SILT(TILL), some sand and clay, little gravel, hard, brown, damp		BENTONITE GROUT	355	X	5
.0				455	X	4
.0	- A Licensia and			11.9		
.0	- very hard, dry to damp	308.44		555	X	>1
	END OF HOLE @ 8.08 m BGS.	308.44				
.0		1 1				
0.0						
1.0						
2.0						*
3.0						0.0

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

STATIC WATER LEVEL

X

Test Pit Logs

St. Marys Landfill

			Soil Sample No. Depth		
Test Pit No	Depth Interval	Soil Description			Groundwater
TP 1		Elevation: 314.61 masl		•	
	0 - 0.25	Medium grey clayey SILT; friable; contains roots; moist (FILL)			
	0.25 - 0.30	Dark grey SILT, organic matter (TOPSOIL)			
	0.30 - 2.10	Medium grey silty CLAY, some sand, some gravel; bedded to 0.66 then massive; stiff to very stiff; moist (TILL) Becoming gravlly at bottom of pit with sandy seams, trace cobbles; wet	S1 S2	0.45 1.0	No water seepage observed
TP 2		Elevation: 316.14 masl			
	0 - 1.75	Light to medium grey gravelly SILT, some clay, some sand, some cobbles; weathered; soft to firm; moist becoming wet around 1.0 m Becoming sandy at bottom of pit Steel pipe in pit bottom (FILL)	S1 S2	1.05 1.75	No water seepage observed
TP 3		Elevation: 318.52 masl			
	0 - 2.70	Medium grey gravelly sandy SILT, trace clay, some cobbles (rounded to subrounded); loose to soft; some caving of pit sidewalls; moist (FILL) Wet seams and inclusions of stiff clay and hard till below 2.2 m	S1 S2 S3	1.05 2.25 2.70	No water seepage observed
TP 4		Elevation: 316.34 masl			
	0 - 0.20	Medium brown SILT, some organic matter (TOPSOIL)			
	0.20 - 2.30	Light brown SILT, some gravel, some sand, trace cobbles, trace boulder; seams of stiff clay; stiff; weathered (FILL)	S1	1.00	
	2.30 - 2.60	Black SILT, some sand; wire fragment; slight odour; moist (FILL)			No water seepage observed
TP 5		Elevation: 318.29 masl			
	0 - 0.60	Light brown cobbly SILT, some sand, some gravel; loose, friable; moist (FILL)			
	0.60 - 1.90	Light grey SILT and fine SAND; low plastic; massive; dense; moist (native waterlaid deposit)	S1	1.40	
	1.90 - 2.00	Medium grey SILT and CLAY, some sand, some gravel, trace cobbles; hard; moist (TILL)	S2	2.00	No water seepage observed

Test Pit Logs

St. Marys Landfill

				Soil	
Test Pit No	Depth Interval	Soil Description	Sample No. Donth		Croundwater
	interval	Soil Description	No.	Depth	Groundwater
TP 6	0 - 0.70	Elevation: 314.10 masl Light brown silty SAND and GRAVEL, some cobbles; compact; saturated	S1	0.35	
	0.70 - 2.50	Light grey SILT and fine SAND; low plastic; massive; dense; moist (native waterlaid deposit) Becoming saturated around 2.3-2.4 m	S2 S3	1.2 2.5	No water seepage observed Cattails in water filled depression nearby likely due to poor drainage and not a shallow water table
TP 7	0 - 2.20	Elevation: 314.93 masl Light brown sandy, gravelly SILT, some cobbles (rounded/subrounded), trace small boulders; massive; stiff; moist (FILL) Caving sidewalls Becoming saturated around 1.9 m	S1 S2	1.4 2.2	No water seepage observed
TP 8		Elevation: 314.62 masl			
	0 - 0.25	Medium brown SILT and CLAY, some organic matter containing roots; friable; moist to wet (TOPSOIL)			
	0.25 - 1.50	Medium grey-brown SILT and CLAY, trace sand, trace gravel, trace cobbles; fractured to 0.5 m very stiff to hard; moist (TILL)	S1	0.90	No water seepage observed
TP 9		Elevation: 314.14 masl			
	0 - 0.30	Dark brown SILT, some fine sand, some organic matter; wet (TOPSOIL)			
	0.30 - 0.60	Meduim brown SILT, fine sand; moist			
	0.60 - 0.75	Mediumb rown silty fine to coarse SAND & fine GRAVEL; loose to compact; wet	S1	0.65	
	0.75 - 1.40	Light grey silty fine SAND; varved; dense; moist	S2	13	No water seepage observed
TP 10		Elevation: 312.47 masl			
	0 - 0.15	Medium brown SILT, some sand, some gravel, some organic matter (TOPSOIL)			
	0.15 - 1.00	Meduim brown SILT, SAND, GRAVEL (rounded), ROCK fragments (angular) (FILL) Difficult to dig below 1.0 m due to amount of rock rubble	S1	1.00	Water seepage around 1.0 m

Test Pit Logs

St. Marys Landfill

Test	Depth		Soil Sample		
Pit No	Interval	Soil Description	No.	Depth	Groundwater
TP 11		Elevation: 313.23 masl			
	0 - 0.30	Medium grey SILT and CLAY, some sand, trace gravel, some organic matter (FILL)			
	0.30 - 1.40	Medium grey CLAY and SILT, some sand, trace gravel, trace cobbles (rounded); weathered to 1.3 m; very stiff to hard; moist (TILL)	S1	1.30	No water seepage observed
TP 12		Elevation: 314.14 masl			
	0 - 0.10	Dark brown SILT, organic matter (TOPSOIL)			
	0.10 - 1.30	Light grey-brown SILT, some clay, trace sand, trace gravel; stiff to very stiff; moist	S1	1.30	No water seepage observed
TP 13		Elevation: 315.86 masl			
	0 - 0.15	Medium grey CLAY and SILT, trace organic matter; loose; moist			
	0.15 - 1.30	Medium grey CLAY and SILT, trace sand, trace gravel, trace cobbles; weathered to 0.7 m; very stiff to hard; moist (TILL)	S1	0.80	No water seepage observed
CKD		Elevation: 323.94 masl			
	0 - 0.30	Dark Brown SILT, some organic matter; moist (TOPSOIL)			
	0.30 - 0.50	Light grey, silt like, loose, dry (cement kiln dust)	S1	0.50	No water seepage observed

Logged on November 5, 2015 by J. Rutherford

All measurements are in metres unless otherwise indicated.

Soil samples will be retained for three months from date of report.